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The covariancematrices are essential quantities in econometric and statistical applications including port-
folio allocation, asset pricing and factor analysis. Testing the entire covariance under high dimensionality
endures large variability and causes a dilution of the signal-to-noise ratio and hence a reduction in the
power. We consider a more powerful test procedure that focuses on testing along the super-diagonals
of the high dimensional covariance matrix, which can infer more accurately on the structure of the co-
variance. We show that the test is powerful in detecting sparse signals and parametric structures in the
covariance. The properties of the test are demonstrated by theoretical analyses, simulation and empirical
studies.
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1. Introduction

The covariance matrix of a random vector or a multivariate
estimating function is a basic ingredient in multivariate analysis
and econometrics in gaining information on the dependence
between the components of the randomvectors and the estimating
functions. The celebrated Markowitz theory for optimal portfolio
selection (Markowitz, 1952) is based on consistent estimation of
the covariance matrix whose dimension is the number of assets
of the portfolio. The sample variance is actively employed in an
array of multivariate procedures such as the principal component
analysis (PCA), the discrimination analysis and the factor analysis.
In econometrics, the generalized method of moment (GMM)
requires inversion of the covariance matrix of the multivariate
moments as theweightingmatrix.When the dimension of the data

✩ We would like to thank the editor of the Special Issue, Professor Rong Chen,
and two referees for helpful comments and suggestions which have substantially
improved the presentation of the paper. The research was partially supported by
Natural Science Foundation of China grants 11131002, 71371016 and 71532001,
National Key Basic Research Program of China Grant 2015CB856000, Center for
Statistical Science and LMEQF at Peking University.
∗ Corresponding author at: Department of Business Statistics and Econometrics,

Guanghua School of Management, Peking University, Beijing 100871, China.
E-mail addresses: hejing1790@pku.edu.cn (J. He), csx@gsm.pku.edu.cn

(S.X. Chen).

http://dx.doi.org/10.1016/j.jeconom.2016.05.007
0304-4076/© 2016 Elsevier B.V. All rights reserved.
vector or the moments is fixed, the sample/empirical covariance is
known to be consistent to the underlying covariance matrix.

Data with dimensions comparable to or larger than the sample
size are increasingly encountered in econometric and statistical
analyses. They include analyses of large panels of financial
portfolios, on-line prices of consumer goods,macro-economic data
that measure a large number of features of an economy; see Stock
and Watson (2005), Bai and Ng (2002), Lam et al. (2011), Bai
and Li (2012), Lam and Yao (2012) and Chang et al. (2015) for
over-views and specific results. Fan et al. (2008) considered a
covariance matrix estimator for a multi-factor model where the
number of factors is allowed to grow with dimension p when p
tends to infinity as the sample size n increases.

Extensive research in obtaining consistent estimators of high
dimensional covariance matrix has been made. Bickel and

Levina (2008a,b) proposed, respectively, the banding and the
thresholding estimator of the covariance matrix by either banding
or thresholding the sample covariancematrix.Wuand Pourahmadi
(2003) and Rothman et al. (2010) studied methods based on the
Cholesky decomposition. Cai et al. (2010) proposed a tapering
estimator. The banding and tapering estimators are operational
when the underlying covariance matrix Σ = (σi,j)p×p belongs to
the so-called bandable class, which prescribes that σi,j diminishes
to zero at certain rates as either j or i increases. There is a set of high
dimensionality tests on the covariance Σ . Testing for the identity
or sphericity hypotheses of Σ has been considered in Ledoit and
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Wolf (2002) and Chen et al. (2010). Cai and Jiang (2011) and Qiu
and Chen (2012) proposed tests for the bandedness of a covariance
matrix. See also Schott (2005) and Srivastava (2005) for other
formulations.

We propose a test regarding the super-diagonals of Σ , which
has much smaller scale than the existing tests, and targets on
global features of Σ , for instance the bandedness or specific
parametric structure. The smaller scale of the super-diagonal as
compared to the entire Σ does pose theoretical challenges when
establishing the asymptotic properties of the test statistic. This is
because the variation of the test statistic is much smaller, which
requires finer derivations in the asymptotic analysis. The benefits
of working with a test statistic being a smaller magnitude is a
reduced variance and an increased signal-to-noise ratio of the test,
which can produce more power than those targeting on the entire
covariance matrixΣ . Tests for overall structures of Σ can bemade
bymultiple testing on the super-diagonals in conjunction with the
false discovery rate or the Bonferroni procedure. We demonstrate
in the paper that the proposed test is useful to the inference
of spatial econometrical and statistical models on covariance,
which tends to be written in terms of the super-diagonals (Kapoor
et al., 2007; Baltagi et al., 2003; Lee and Yu, 2010; Rodríguez and
Bárdossy, 2014).

The paper is organized as follows. We outline the framework of
the testing problem, including the hypotheses, assumptions and
the proposed test statistics in Section 2. Section 3 provides the
theoretical properties of the test statistics and the multiple testing
procedure. In Sections 4 and 5, we discuss tests for bandedness
and parameter structures of Σ , respectively. Results of simulation
studies are provided in Section 6. An empirical analysis is reported
in Section 7. All technical details are given in Appendix.

2. Preliminaries

Consider a p-dimensional generic random vector X = (X1,
X2, . . . , Xp)

T , which has mean µ = (µ1, µ2, . . . , µp)
T and

covariance matrix Σ = (σi,j)p×p. The observed data Xi =

(Xi,1, . . . , Xi,p)
T , i = 1, . . . , n, are independent copies of X . For

q = 0, 1, . . . , p − 1, let Dq =
p−q

l=1 σ 2
l,l+q be the sum of the σ 2

i,j
along the qth super-diagonal,whereD0 represents that on themain
diagonal.

We consider testing covariance structures with respect to
the super- or sub-diagonals of Σ via Dq. We have two specific
covariance structures in mind. One is the nonparametric banded
structure in that σi,j = 0 for any |i − j| > k for an integer k. The
smallest such k is called the bandwidth of Σ . And the other is an
isomorphic parametric structure where σi,j = σ(|i − j|; θ) for a
finite dimensional parameter θ, which is a popular form in spatial
econometrics.

The banding structure can be produced by a moving average
structure such that, for i = 1, . . . , n,

Xi,l = µl +

k
j=0

γjZi,l−j,

where for each given i, µl is the mean of Xi,l and {Zi,1, Zi,2, . . .} is
a sequence of independent white noise with zero mean and unit
variance, Zi,j = 0 for j ≤ 0, and γ0 = 1. The integer k is the
bandwidth of Σ .

More generally, we consider testing certain parametric model
regarding the super-diagonal structure of Σ:

H0,q : Dq = Dq(θ) vs H1,q : Dq ≠ Dq(θ)

where Dq(θ) is a parametric form, for q = 1, 2, . . . , p − 1,
and θ is a finite dimensional parameter. For bandedness test,
Dq(θ) ≡ 0 for q > k. A motivation for such model comes
from the spatial econometrics or statistics where the Xi consists of
recordings at p locations. If {Xi,j}

p
j=1 is weakly stationary, σj,j+h =

Cov(Xi,j, Xi,j+h) = C(h) defines a covariance function C(·). Let
θ = (σ 2, φ)T and commonly used spatial models for C(·) include
the spherical model

C(h; θ) = σ 2 1 − 1.5(h/φ) + 0.5(h/φ)3

, φ > 0, h < φ;

the wave model

C(h; θ) = σ 2φ sin(h/φ)/h;

the exponential model

C(h; θ) = σ 2 exp (−h/φ) and

the Gaussian model

C(h; θ) = σ 2 exp

−h2/φ


.

See Cressie (1993), Kapoor et al. (2007), Baltagi et al. (2003), Lee
and Yu (2010) and Rodríguez and Bárdossy (2014) formore details.

The proposed test statistics for super-diagonals are based on an
unbiased estimator of Dq:

D̂q =

p−q
l=1

 1
P2
n

∗
i,j

(Xi,lXi,l+q)(Xj,lXj,l+q) −
2
P3
n

∗
i,j,k

Xi,lXk,l+q(Xj,lXj,l+q)

+
1
P4
n

∗
i,j,k,m

Xi,lXj,l+qXk,lXm,l+q


,

where


∗ denotes summation over mutually different subscripts,
and Pb

n = n!/(n − b)!. It is clear that D̂q is a linear combinations of
U-statistics. Without loss of generality, we assume µ = 0 since D̂q
is invariant to the location shift.

To quantify the dependence among components of the data
vector, we invoke the notion of α-mixing. The α-mixing coefficient
of the generic X = (X1, . . . , Xp)

T is defined as

αX (k) = sup
m∈Z

α(Gm
1 , G

p
m+k), (2.1)

where α(Gm
1 , G

p
m+k) = sup{|P(A ∩ B) − P(A)P(B)| : A ∈ Gm

1 ,

B ∈ G
p
m+k},G

m
1 andG

p
m+k are theσ -fields generated by {X1, . . . , Xm}

and {Xm+k, . . . , Xp}, respectively. If limk→∞ αX (k) = 0, the
sequence of components in X is said to be α-mixing. Furthermore,
we denote the eigenvalues of Σ as λmax(Σ) = λ1(Σ) ≥ λ2(Σ) ≥

· · · ≥ λp(Σ) = λmin(Σ).
Our test procedure does not require any explicit relationship

between the sample size n and the dimension p other than that
they both diverges to infinity. It allows p to be much larger than n,
that is, the ‘‘large p, small n’’ situation. We assume the following
conditions in our analysis.

A1 There are positive constants c and a ∈ (0, 1) such that
αX (k) ≤ cak.

A2 The eighthmoment of Xℓ is uniformly bounded, i.e. sup1≤ℓ≤p

E|Xℓ|
8

≤ M , for a positive constant M . There exists a positive
constant ϵ0, such that λmin(Σ) ≥ ϵ0 > 0.

A3 Data vectors Xi are generated by Xi = Γ Zi for i = 1, 2,
· · · , n, where Γ =


Γi,j

p×m is a p × m constant matrix, satisfying

Γ Γ ′
= Σ and m ≥ p, and Z1, Z2, · · · , Zn are independently and

identically distributed (IID) m-dimensional random vectors such
that E(Zi) = 0 and Var(Zi) = Im. Write Zi = (Zi,1, . . . , Zi,m)T . We
assume Zi,j have uniformly bounded 8th moment, and there exists
a finite constant ∆ such that E(Z4

i,j) = 3 + ∆ for j = 1, . . . ,m,

and E(Zℓ1
i,j1

Zℓ2
i,j2

· · · Zℓq
i,jq) = E(Zℓ1

i,j1
)E(Zℓ2

i,j2
) · · · E(Zℓq

i,jq) for any integers
ℓν ≥ 0 with

q
ν=1 ℓν ≤ 8 and distinct subscripts j1, . . . , jq.

The α-mixing coefficient in Assumption A1 can be relaxed to be
polynomial decay such that αX (k) ≤ ck−β for positive constants



J. He, S.X. Chen / Journal of Econometrics 194 (2016) 283–297 285
c and β ∈ (1, ∞) without altering the main conclusion of the
paper. The technical details would be more involved though. From
A2, by Lyapunov’s inequality, we can infer that the rth moment of
Xℓ is also uniformly bounded for 1 ≤ r < 8. Assumptions A1 and
A2, and the α-mixing of the sequence {Xℓ}

p
ℓ=1 together with the

Davydov’s inequality imply that

|σi,j| ≤ 12∥Xi∥4∥Xj∥4 (αX (|i − j|))
1
2 ≍ ca

|i−j|
2 , (2.2)

where ∥Xi∥r = (E|Xi|
r)1/r . Throughout the paper, we define an ≍

bn if and only if an = O(bn) and bn = O(an) for two nonrandom
sequences {an} and {bn}. By Gershgorin’s Theorem, the eigenvalues
of Σ satisfy, for a positive constant C ,

λmax(Σ) ≤ max
i

p
j=1

|σi,j| < C .

Let h(q) =̂
1

p−qDq =
1

p−q

p−q
l=1 σ 2

l,l+q be the average signal
strength on the qth super-diagonal. Then, (2.2) implies that

h(q) ≤ caq → 0 as q → ∞, and
q>k

h(q) ≤ c

q>k

aq → 0 as k → ∞. (2.3)

Assumption A3 is widely assumed in the studies of high di-
mensionalmultivariate analysis, for instance in Bai and Saranadasa
(1996), Qiu and Chen (2012) and Li and Chen (2012). It includes the
Gaussian family and members of the elliptically contoured distri-
butions as special cases. It leads to trackable expressions of higher
order cross moments of Xi.

Our analysis on the covariance are more intimately related to

Y l1,l2
t = Xt,l1Xt,l2 − σl1,l2 and ωl1,l2 = Cov(Y l1,l1+q

t , Y l2,l2+q
t )

for l1, l2 = 1, . . . , p. Moreover, for a given q = 0, 1, . . . , p − 1, let

Y⃗t(q) =


Y 1,1+q
t , Y 2,2+q

t , . . . , Y p−q,p
t

T
,

whose covariance is Wq =

ωl1,l2


(p−q)×(p−q). Since {Xi}

n
i=1 are IID,

{Y⃗t(q)}nt=1 are also IID for each given q. Let αY (k) be the α-mixing

coefficient of the sequence

Y l,l+q
t

p−q

l=1
, which can be similarly

defined as αX (k) in (2.1). It can be inferred that for each given q,
αY (k) ≤ αX (k − q) for k > q.

According to Lemma 1 given in the Appendix, it can be readily
shown that

tr(W 2
q ) =

p−q
l=1

λ2
l (Wq) ≤ M ′2(p − q) = O(p − q).

To facilitate the analysis on the asymptotic properties of D̂q

and estimating the variance of D̂q in Section 3, we assume more
specifically the following

A4 tr(W 2
q ) =

p−q
i=1 λ2

i (Wq) ≍ p − q.
The properties of the test statistic D̂q are given in the following

proposition.

Proposition 1. Under Assumptions A1 – A4, for q = 0, 1, . . . , p−1,

E(D̂q) = Dq and

Var(D̂q) =


4
n

p−q
l1,l2=1

σl1,l1+qσl2,l2+qωl1,l2 +
2

n(n − 1)
tr(W 2

q )


× {1 + o(1)} .

Hence, if Σ is banded with bandwidth k, then for any q > k,

Var(D̂q) =
2

n(n − 1)
tr(W 2

q ).
3. Asymptotic results

In this section, we first establish the asymptotic distribution of
D̂q. Let

Vp,q,1 =

p−q
l1,l2=1

σl1,l1+qσl2,l2+qωl1,l2 and

Vp,q,2 =

p−q
l1,l2=1

ω2
l1,l2 = tr(W 2

q ).

The asymptotic variance Var(D̂q) has different leading orders
for different q. From Assumption A1 and the proof of Proposition 1,

4
n
Vp,q,1 ≍

(p − q)aq

n
and

2
n(n − 1)

Vp,q,2 ≍
p − q
n2

.

These imply the asymptotic variance of D̂q under three regimes:
(i) the smaller q case such that q = o{log(n)}, (ii) the ‘‘median’’
q case such that aq ≍ 1/n and (iii) the larger q case such that
log(n) = o(q) and q = o(p), respectively. The three regimes of q
induce different orders for Var(D̂q). In the smaller q regime (i), the
leading term of Var(D̂q) is 4

nVp,q,1; and in the median q regime (ii),
4
nVp,q,1 and 2

n(n−1)Vp,q,2 are the joint leading order terms, whereas

for the larger q in regime (iii), the leading order term of Var(D̂q)

becomes 2
n(n−1)Vp,q,2, which is of smaller order than the variance

under the smaller q regime (i). These differential orders in the
variance reflect two facts. One is that D̂q involves far more terms
when q is smaller, and hence has larger variation relative to the
larger q case. The other is that, according to (2.3), the magnitude of
h(q)declines as q increases. The latter indicates that D̂q not only has
far less terms for larger q, but also those terms have much smaller
magnitude, and hence less variation.

Define σ 2
D̂q

=
4
nVp,q,1 +

2
n(n−1)Vp,q,2. The following theorem

establishes the asymptotic normality of D̂q for q = o(p).

Theorem 1. Under Assumptions A1–A4, for q = o(p),

σ−1
D̂q


D̂q − Dq


d

→ N(0, 1) as n → ∞ and p → ∞.

We note in passing that for the large q case such that

(p − q)/p → c ∈ (0, 1) (3.1)

the variance expression for the regime (iii) of q is still applicable,
and specifically Var(D̂q) ≍

p−q
n2

. However, the analogues of the
two key conditions (A.3) and (A.4) in establishing the Martingale
Central Limit Theorem (CLT) (Hall and Heyde, 1980) are no longer
assured. It is uncertain if we could still have the asymptotic
normality under (3.1).

It can be shown that Theorem 1 remains valid if the exponen-
tially decay α-mixing coefficient of X is relaxed to be polynomi-
ally decay such that αX (k) ≤ ck−β for positive constants c and
β ∈ (1, ∞), except that the order that divides the smaller and
larger q becomes n1/β , which is larger than the order for the expo-
nentially decay case.

In order to establish a test procedure based on the asymptotic
normality, it is necessary to estimate Vp,q,1 and Vp,q,2, respectively.
We estimate Vp,q,1 and Vp,q,2 by U-statistics. Specifically, Vp,q,1 is
estimated by

V̂p,q,1 =

p−q
l1,l2=1

∗
i,j,k

1
P3
n
(X̃i,l1 X̃i,l1+q)(X̃j,l1 X̃j,l1+q)

×


X̃k,l1 X̃k,l1+q − σ̂

(i,j,k)
l1,l1+q

 
X̃k,l2 X̃k,l2+q − σ̂

(i,j,k)
l2,l2+q


, (3.2)
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where σ̂
(i,j,k)
l,l+q is the sample covariance of Xl and Xl+q by avoiding

the ith, jth and kth observation and X̃i,l = (Xi,l − X̄ (i,j,k)
l ), X̄ (i,j,k)

l =

1
n−3


s≠i,j,k Xs,l. The rationale for using σ̂

(i,j,k)
l,l+q instead of σ̂l,l+q in

the two subtractions in (3.2) is to have less bias in the estimation
of Vp,q,1, as showed in the proof of Proposition 2 in the appendix.

We use the following estimator to estimate Vp,q,2, motivated
by Chen et al. (2010) and Li and Chen (2012),

V̂p,q,2 =
1
P2
n

∗
i,j


p−q
l=1

(X̃i,lX̃i,l+q − σ̂
(i,j)
l,l+q)(X̃j,lX̃j,l+q − σ̂

(i,j)
l,l+q)

2

,

(3.3)

where σ̂
(i,j)
l,l+q is similarly defined as σ̂

(i,j,k)
l1,l1+q in (3.2). A computation-

ally more efficient estimator is

Ṽp,q,2 =
1
P2
n

∗
i,j


Y⃗i(q)T Y⃗j(q)

2
(3.4)

which uses the sample covariance σ̂l,l+q instead of the computa-
tionally more expensive σ̂

(i,j)
l,l+q, where

Y⃗i(q) =


Ŷ 1,1+q
i , . . . , Ŷ p−q,p

i

T
and Ŷ l,l+q

i = Xi,lXi,l+q − σ̂l,l+q.
The following proposition establishes the consistency of the

above estimators.

Proposition 2. Under Assumptions A1–A4, for q = o(p), as n →

∞ and p → ∞, V̂p,q,1/Vp,q,1
p

→ 1, V̂p,q,2/Vp,q,2
p

→ 1 and
Ṽp,q,2/Vp,q,2

p
→ 1.

Let σ̂ 2
D̂q

=
4
n V̂p,q,1 +

2
n(n−1) V̂p,q,2. Proposition 2 together with the

asymptotic normality established in Theorem1 implies, via Slutsky
Theorem, that under Assumptions A1–A4, for q = o(p),

σ̂−1
D̂q


D̂q − Dq


d

→ N(0, 1) as n → ∞ and p → ∞. (3.5)

4. Tests for bandedness

A test for H0,q : Dq = 0 versus H1,q : Dq > 0 is facilitated
by (3.5). Note that the test should be a one-sided test since Dq is
always greater than or equal to zero. It is worth mentioning that
under H0,q : Dq = 0, Vp,q,1 = 0 so that we only need to estimate
Vp,q,2. Thus, a test with a nominal α level of significance rejects
H0,q : Dq = 0 for q = o(p) if

D̂q > z1−α


2V̂p,q,2

n(n − 1)
,

where z1−α is the 1 − α quantile of N(0, 1).
The asymptotic normality of D̂q in Theorem 1 allows a power

evaluation of the above test. Let δnp,q = Dq/σD̂q
, which may be

viewed as a signal to noise ratio for the testing problem. Denote
the power of the test by βq,α .

Theorem 2. Under Assumptions A1–A4, and the alternative H1,q :

Dq > 0, then, for q = o(p), lim infn,p→∞ βq,α ≥ 1 −

Φ

z1−α − lim infn,p→∞ δnp,q


.

For q = o(log n), δnp,q ≍
√
n(p − q)h(q). Hence, if

√
n(p − q)

h(q) → ∞ for q = o(log n), the power βq,α → 1 as n, p → ∞.
For large q such that log(n) = o(q) and q = o(p), if δnp,q ≍

n
√
p − qh(q) → ∞, βq,α → 1 as n, p → ∞. These results

imply that despite h(q) may become smaller as q gets larger, the
multiplication by

√
n(p − q) and n

√
p − q for the smaller q and the
large q cases offsets the declining h(q) to attain the consistency of
the test. In a sense, for a fixed q, a larger p is in fact beneficial to the
power, as confirmed in the simulation study.

The above individual test for Dq = 0 may be combined via a
multiple testing procedure to form a test for the bandedness of Σ .
Let

Bk(Σ) =

σi,jI{|i − j| ≤ k}


p×p

be the banding operator. Then, the hypothesisH0 : Σ = Bk(Σ) can
be tested by conducting multiple testing for H0,q : Dq = 0 for q =

k+1, . . . , k+K via implementing either the Bonferroni correction
or the FalseDiscovery Rate (FDR) control procedure (Benjamini and
Hochberg, 1995), whenever k+K = o(p),where K is the number of
super-diagonals being covered. For using the FDR based multiple
testing, denote the p-values for testing H0,k+1, H0,k+2, . . . ,H0,k+K
as P1, P2, . . . , PK , respectively. Let P(1) ≤ P(2) ≤ . . . ≤ P(K) be the
ordered p-values andH(0,k+i) be the null hypothesis corresponding
to P(i). If P(K) < α, all the hypotheses are rejected. If P(K) ≥ α, let
ℓ be the largest i such that P(i) ≤

i
K α, then we reject all H(0,k+i)

for i = 1, 2, . . . , ℓ. The hypothesis H0 : Σ = Bk(Σ) is rejected if
ℓ > 1. For using the Bonferroni multiple testing, H0,k+i is rejected
if Pi ≤ α/K . And the joint hypothesis H0 : Σ = Bk(Σ) is rejected
if there is any H0,k+i being rejected.

The power of the multiple test is determined by the power
evaluation of individual tests in Theorem 2. The empirical power
of the test is evaluated in simulation studies section.

5. Tests for parametric structures

We consider testing for parametric form Dq(θ) for a parameter
θ ∈ Θ which is a compact d-dimensional parameter space and
d is fixed. Verifying the parametric form Dq(θ) by data provides
confirmation or otherwise on the super-diagonal structure of Σ

and facilitates more efficient estimation for Σ . Specifically, we
consider testing

H0 : Dq = Dq(θ), q = 1, . . . ,N for a θ ∈ Θ (5.1)

versus H1 : Dq ≠ Dq(θ) for any θ ∈ Θ and some q ∈

{1, . . . ,N}, where N is an integer that is N = o(p). It implies
that Σ has a parametric structure along the super-diagonals. It is
worthmentioning that the amount of data information only allows
us to test up to N super-diagonals, while N diverges to infinity
more slowly than p as n → ∞. As θ is unknown, we need to
first construct a consistent estimator θ̂ using D̂1, . . . , D̂r . As θ’s
dimension is fixed, we consider r being fixed and r ≥ d. We then
establish the asymptotic normality for D̂q−Dq(θ̂) for q = 1, . . . ,N .
Finally we apply the multiple testing procedure by controlling the
FDR for H0 in (5.1).

Let g(θ; q) =


D̂q − Dq(θ)


/(p − q) and an r × 1 vector

Gr(θ) =

g(θ; 1)
...

g(θ; r)

 =

(D̂1 − D1(θ))/(p − 1)
...

(D̂r − Dr(θ))/(p − r)

 . (5.2)

We estimate θ by

θ̂ = argmin
θ∈Θ

Gr(θ)
TGr(θ). (5.3)

Define the infinity norm ∥(θ1, . . . , θd)∥∞ = max1≤i≤d |θi|. The
following assumptions are needed to ensure the consistency of θ̂.

C1 The parametric space Θ is a compact subset of Rd and θ0 is
a fixed value in the interior of Θ . Under H0, E(g(θ; q)) = 0 if and
only if θ = θ0 for q = 1, . . . , p − 1.

C2 (i) For any q, the function Dq(θ) is continuous differentiable
on Θ and satisfies the Lipschitz condition that there exists a
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constant lq such that for any θ, θ′
∈ Θ , |Dq(θ) − Dq(θ

′)| ≤

lq∥θ−θ′
∥∞, (ii)

r
i=1 ∇θDi(θ0)∇θDT

i (θ0)/(p− i)2 is invertible, and

(iii) ∂Dq(θ)
∂θj

/(p−q) ≍ 1, ∂2Dq(θ)
∂θj∂θk

/(p−q) ≍ 1 and ∂3Dq(θ)
∂θj∂θk∂θl

/(p−q) ≍ 1
for each q = 1, . . . , r , j, k, l = 1, . . . , d and any θ ∈ Θ .

Assumption C1 is the identification condition for θ0. In order
to ensure the consistency of θ̂ under H0, regularity conditions
for Dq(θ) are needed in Assumption C2. Specifically, Assumption
C2 (i) assures that Dq(θ) satisfies the Lipschitz condition for any
q, which is required for establishing uniform convergence in
probability of Gr(θ) to EGr(θ). The latter is needed in obtaining
the consistency of θ̂ to θ0 under H0. Assumption C2 (ii) is assumed
to exclude cases that ∇θGr(θ0) = 0. And Assumption C2 (iii) is
used for controlling the remainder term of a Taylor expansion in
establishing the convergence rate of θ̂. For the exponential and
polynomial covariance models given in (6.2) and (6.3), C2 (i)–(iii)
are satisfied. It is worth mentioning that if {Xi,l}l≥1 follows a mean
zero Gaussian AR(1) model such that
Xi,l = θXi,l−1 + Zi,l (5.4)
with IID Gaussian white noise {Zi,l}l≥1, then Assumption C2 rules
out the case of θ = 0. Specifically, we consider Θ = [ϵ −

1, −ϵ]


[ϵ, 1 − ϵ] for a sufficiently small constant ϵ > 0. As a
matter of fact, if θ0 = 0 in Model (5.4), Dq(θ0) = 0 for q ≥ 1
and Σ is a diagonal matrix. We are still able to implement the
test outlined in Section 4, though we cannot obtain a consistent
estimator for θ0 by (5.3).

The consistency with the convergence rate of θ̂ under the null
hypothesis H0 is given in the following theorem.

Theorem 3. Suppose that AssumptionsA1–A4 andC1–C2 hold. Then,
under H0, as n → ∞ and p → ∞,

√
np

θ̂ − θ0


= Op(1).

We only consider estimating θ̂ using the first r super-diagonals
D̂1, . . . , D̂r for the sake of easy implementation. It can be shown
that the consistency of θ̂ is still valid if θ̂ is estimated by
D̂q1 , . . . , D̂qr and q1, . . . , qr are chosen such that q1 is fixed and
there is a fixed proportion of qi = o(log(n)) whereas the rest of
qi are of larger order of log(n) and qi = o(p).

It can be shown that, except for different asymptotic variance,
the asymptotic normality in Theorem 1 is still valid by plugging in
θ̂. We denote the asymptotic variance of D̂q − Dq(θ̂) by σ 2

q,r , which
is defined separately in the following two regimes:
(i) For q ∈ {1, . . . , r}, σ 2

q,r = uq,r,1(θ0)Var(Gr(θ0))uT
q,r,1(θ0),

where the 1 × r vector

uq,r,1(θ0) = (p − q)eTq + ∇θDT
q (θ0)

×

∇θGT

r (θ0)∇θGr(θ0)
−1

∇θGT
r (θ0) (5.5)

and ei is the ith unit vector.
(ii) For q > r and q = o(p), by defining an (r + 1) × 1 vector

Fq,r(θ0) =

GT
r (θ0), g(θ0; q)

T , σ 2
q,r = uq,r,2(θ0)Var(Fq,r(θ0))

uT
q,r,2(θ0), where

uq,r,2(θ0) =


∇θDT

q (θ0)

∇θGT

r (θ0)∇θGr(θ0)
−1

× ∇θGT
r (θ0), (p − q)


(5.6)

is a 1 × (r + 1) vector.

Compared with the asymptotic variance σ 2
D̂q

in Theorem 1, σ 2
q,r

involves with the variations generated by D̂1, . . . , D̂r which are
used to estimate θ. The asymptotic normality of D̂q−Dq(θ̂) is given
in the following theorem.
Theorem 4. Suppose that the conditions in Theorem 3 hold. Then,
under H0, as n → ∞ and p → ∞, for q = o(p),
σ−1
q,r


D̂q − Dq(θ̂)


d

→ N(0, 1).

We need to estimate σ 2
q,r in order to develop tests based on the

asymptotic normality. An estimator σ̂ 2
q,r is defined in the Appendix

as well as the proof of the following proposition.

Proposition 3. Under Assumptions A1–A4, for q = o(p), as n → ∞

and p → ∞, σ̂ 2
q,r/σ

2
q,r

p
→ 1.

Based on Theorem 4 and Proposition 3, H0,q : Dq = Dq(θ)

can be tested which rejects H0,q if |D̂q − Dq(θ̂)| > z1−α/2σ̂q,r .
The FDR multiple testing procedure can be applied for testing H0:
Dq = Dq(θ) for q = 1 . . . ,N .

We conclude this section by considering the power property
of the proposed test, which requires first considering estimation
of the parameter estimator θ̂ under mis-specified super-diagonal
models. Under H1, define

θ∗ = argmin
θ∈Θ

Ḡr(θ)
T Ḡr(θ)

where Ḡr(θ) = ((D1 −D1(θ))/(p− 1), . . . , (Dr −Dr(θ))/(p− r))T
is the expectation of Gr(θ). The following identification condition
parallels to C1.

C3 Under H1, ḠT
r (θ)Ḡr(θ) has a unique minimum at a fixed θ∗

which is in the interior of Θ and does not change as p increases.
Theorem 5 shows that θ̂ converges to θ∗ in probability underH1

at the rate of
√
np.

Theorem 5. Suppose that AssumptionsA1–A4, C2 and C3 hold. Then,
under H1, as n → ∞ and p → ∞,

√
np

θ̂ − θ∗


= Op(1).

The following theorem evaluates the probability of rejecting
H0,q : Dq = Dq(θ) under H1 by the test that is based on Theorem 4.
Let δ∗

np,q = |Dq − Dq(θ∗)|/σq,r , which may be viewed as the
signal-to-noise ratio of the test. Let βq,α , again, be the power of the
test for H0,q : Dq = Dq(θ).

Theorem 6. Suppose that the conditions in Theorem 5 hold. Then,
under H1,q : Dq ≠ Dq(θ), if lim infn,p→∞ δ∗

np,q → ∞, βq,α → 1
as n, p → ∞.

The theorem shows that the proposed test for the parametric
model for the qth super-diagonal is consistent provided the signal-
to-noise ratio δ∗

np,q diverges.

6. Simulation results

In this section, we report results from simulation experiments
which are designed to investigate the numerical performance of
the proposed tests.

We first considered testing for the banded structure of Σ using
the proposed test on the super-diagonals in conjunction with
the FDR control procedure. We also compared with the tests for
the banded Σ proposed by Cai and Jiang (2011) and Qiu and
Chen (2012). We generated Xi = (Xi,1, . . . , Xi,p) independently
according to the following moving average model:

Xi,j = Zi,j + 0.4Zi,j−1 + 0.4Zi,j−2 + 0.4Zi,j−3

+ 0.4Zi,j−4 + 0.4Zi,j−5, (6.1)

where {Zi,j}
p
j=1 were i.i.d. random variables with zero mean and

unit variance. Two distributions for Zi,j were considered. One was
the N(0, 1); and the other was the standardized Gamma(1, 0.5)
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Table 1
Empirical sizes of the proposed multiple test, QC’s test and CJ’s test for testing H0 : Σ = B5(Σ) when data are
generated from model Eq. (6.1). The proposed multiple testing is conducted with FDR controlled at 5% and QC’s test
is implemented at the nominal significance level α = 0.05. Comparable empirical sizes are reported for CJ’s test and
inside the parentheses are the nominal significance levels of CJ’s test.

p Normal Gamma
n n
50 100 200 50 100 200

Proposed multiple test
50 0.045 0.046 0.053 0.041 0.061 0.044

100 0.059 0.055 0.034 0.039 0.048 0.039
200 0.048 0.037 0.044 0.050 0.050 0.062
400 0.036 0.049 0.045 0.034 0.038 0.033
600 0.032 0.033 0.036 0.035 0.040 0.046

1000 0.016 0.038 0.032 0.014 0.032 0.044

QC’s test
50 0.053 0.032 0.047 0.042 0.042 0.041

100 0.049 0.056 0.033 0.054 0.037 0.043
200 0.051 0.053 0.038 0.050 0.058 0.044
400 0.068 0.048 0.066 0.056 0.052 0.054
600 0.053 0.051 0.048 0.060 0.055 0.058

1000 0.049 0.053 0.054 0.048 0.054 0.056

CJ’s test
50 0.050(0.28) 0.054(0.18) 0.049(0.18) 0.050(0.11) 0.053(0.07) 0.049(0.08)

100 0.053(0.30) 0.051(0.22) 0.054(0.17) 0.046(0.12) 0.055(0.06) 0.049(0.06)
200 0.047(0.40) 0.052(0.22) 0.053(0.14) 0.052(0.14) 0.055(0.07) 0.050(0.04)
400 0.055(0.61) 0.050(0.24) 0.053(0.14) 0.050(0.19) 0.054(0.07) 0.053(0.05)
600 0.049(0.65) 0.051(0.30) 0.050(0.14) 0.050(0.19) 0.048(0.05) 0.064(0.04)

1000 0.047(0.80) 0.050(0.36) 0.051(0.17) 0.052(0.25) 0.048(0.05) 0.053(0.04)
distribution so that it has zero mean and unit variance. The
covariance of model (6.1) is banded with the bandwidth k =

5. When evaluating the empirical sizes, we tested H0 : Σ =

B5(Σ) via testing multiple nulls H0,q : Dq = 0 from q = 6
to q = ⌊3p/ log(p)⌋ coupled with the FDR procedure. For power
evaluation, we tested H0 : Σ = B4(Σ) and conducted the
multiple testing on H0,q : Dq = 0 from q = 5 to q =

⌊3p/ log(p)⌋. The sample size was n = 50, 100, 200 and the
dimension p = 50, 100, 200, 400, 600, 1000, respectively, which
created situations of the ‘‘large p, small n’’.

The empirical sizes and powers of the proposed test with
the FDR controlled at 5% and those of Qiu and Chen (QC)’s test
and Cai and Jiang (CJ)’s test at 5% significance level under the
same data generating settings were reported in Tables 1 and 2,
respectively. Table 1 indicates that there were some size distortion
with CJ’s test for bandedness. To ensure fairer comparison of the
power, we used larger nominal size, given inside the parentheses,
for CJ’s proposal such that empirical sizes of their test were
closer to 5%. We observed from Table 1 that there was some
size deflation of the proposed multiple testing procedure, owing
to the conservative nature of the FDR implementation. Despite
lower empirical sizes, Table 2 shows that the proposed test on the
super-diagonals had significantly better power than those of QC’s
and CJ’s test, especiallywhen the sample sizewas small. The reason
for QC’s and CJ’s tests having lower power than the proposed
test based on the super-diagonals was due to the statistics of
these two tests were global involving much more entries of the
sample covariance, which caused amuch larger variance of the test
statistics. Furthermore, CJ’s test was based on an extreme value
type statistic which converges slowly and they required Gaussian
assumption. Indeed, the powers of the two tests were not restored
until the sample size reaches 200 in the simulation.

We then considered testing for a parametric model of the
super-diagonals H0,q : Dq = Dq(θ), q = 1, . . . ,N and N = o(p)
for a θ ∈ Θ . We generated p-dimensional Xi IID from N(0, Σ),
i = 1, . . . , n, where Σ =


σi,j

p×p. Two forms of σi,j were

experimented. One was the exponentially decay covariances

σi,j = I(i = j) + θ1 exp (−|i − j|/θ2) (6.2)
Table 2
Empirical powers of the proposed multiple test, QC’s test and CJ’s test for testing
H0 : Σ = B4(Σ)when data are generated frommodel (6.1). The proposedmultiple
testing is conducted with FDR controlled at 5% and QC’s test is implemented at
the nominal significance level α = 0.05. The empirical testing powers of CJ’s test
are corresponding to the empirical sizes in Table 1, where the nominal significance
levels of their test are reported inside the parentheses.

p Normal Gamma
n n
50 100 200 50 100 200

Proposed Multiple Test
50 0.664 0.986 1.000 0.589 0.985 1.000

100 0.973 1.000 1.000 0.962 1.000 1.000
200 1.000 1.000 1.000 1.000 1.000 1.000
400 1.000 1.000 1.000 1.000 1.000 1.000
600 1.000 1.000 1.000 1.000 1.000 1.000

1000 1.000 1.000 1.000 1.000 1.000 1.000

QC’s Test
50 0.215 0.516 0.984 0.207 0.537 0.993

100 0.224 0.569 0.982 0.227 0.564 0.980
200 0.236 0.558 0.980 0.229 0.565 0.976
400 0.252 0.561 0.983 0.236 0.567 0.978
600 0.266 0.582 0.984 0.244 0.561 0.980

1000 0.262 0.548 0.976 0.223 0.551 0.984

CJ’s Test
50 0.371 0.907 1.000 0.370 0.827 1.000

100 0.280 0.903 1.000 0.286 0.808 1.000
200 0.216 0.819 1.000 0.219 0.792 0.999
400 0.191 0.725 1.000 0.186 0.741 1.000
600 0.161 0.733 1.000 0.140 0.640 1.000

1000 0.134 0.714 1.000 0.119 0.577 1.000

with θ0 = (θ1, θ2)
T

= (1, 20)T . Under model (6.2), Dq(θ) =

(p−q)θ2
1 exp (−2q/θ2). And the other was the polynomially decay

covariances

σi,j = I(i = j) + θ1|i − j|−θ2 (6.3)

with θ0 = (θ1, θ2)
T

= (1, 0.4)T . Under model (6.3), Dq(θ) =

(p − q)θ2
1 q

−2θ2 .
In testing the overall covariance structure along the super-

diagonals, let N = ⌊3p/ log(p)⌋ and a multiple testing for H0,q :
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Table 3
Empirical sizes and powers for testing H0 : Dq = (p − q)θ2

1 exp(−2q/θ2) at 5%
significance level. The empirical powers are evaluated for data generated from the
polynomial model (6.3).

p Empirical sizes Empirical powers
n n
50 100 200 50 100 200

50 0.045 0.053 0.055 0.124 0.173 0.138
100 0.049 0.058 0.057 0.365 0.687 1.000
200 0.042 0.050 0.055 0.969 1.000 1.000
400 0.039 0.056 0.057 1.000 1.000 1.000
600 0.032 0.049 0.048 1.000 1.000 1.000

1000 0.033 0.044 0.046 1.000 1.000 1.000

Table 4
Empirical sizes and powers for testing H0 : Dq = (p − q)θ2

1 q
−2θ2 at 5% significance

level. The empirical powers are evaluated for data generated from the exponential
model (6.2).

p Empirical sizes Empirical powers
n n
50 100 200 50 100 200

50 0.059 0.061 0.065 0.099 0.114 0.122
100 0.052 0.060 0.059 0.142 0.776 1.000
200 0.050 0.055 0.052 0.873 0.986 1.000
400 0.049 0.057 0.058 1.000 1.000 1.000
600 0.044 0.048 0.054 1.000 1.000 1.000
1000 0.039 0.044 0.047 1.000 1.000 1.000

Dq = Dq(θ), q = 1, . . . ,N was carried out in conjunction with
the FDR procedure. We chose r = 5 and θ was estimated by (5.3)
using the first five super-diagonals. We tested H0 : Dq = (p −

q)θ2
1 exp (−2q/θ2) for data generated frommodel (6.2) and model

(6.3), in order to evaluate the empirical sizes and empirical powers,
respectively. The empirical powers of the testwere given in Table 3.
Then, testing Dq(θ) = (p − q)θ2

1 q
−2θ2 for data generated from

model (6.2) and model (6.3) was performed with the empirical
sizes and powers reported in Table 4. Average estimates of θ̂ and
standard deviations were reported in Table 5, which shows the
consistency of θ̂.

Despite relatively lower empirical sizes, Tables 3 and 4 show
that the proposed multiple testing maintained high powers for
detecting the parametric mis-specification of Dq. It was noted that
themultiple tests for the polynomial covariancemodelswhen data
were generated from the exponential model (6.2) attained higher
power than those for testing the exponential covariance model
when data were generated from the polynomial model (6.3). This
was because the signal to noise ratio δ∗

np,q = |Dq −Dq(θ∗)|/σq,r for
data generated from the exponential model (6.2) was larger than
that for model (6.3), since the variance of D̂q was smaller in model
(6.2) than that in model (6.3) due to a quicker decay in h(q) under
the exponential model.

7. Empirical study

In this section, we considered modeling the covariance
structure among A-shares in Shanghai and Shenzhen Stock
Exchanges from January 8, 2010 to October 21, 2014, which
consisted of 246 weekly returns. This period was relatively calm
after the upheaval of the Great Financial Crisis in 2008 and its
after-shocks. We first excluded stocks which had periods of trade
suspensions. Then, we selected from the remaining stocks such
that its sum of absolute correlation with the other stocks is
less than 400, which is the 2/3-quantile of the row sums of the
sample correlation matrix of the remaining stocks. This was to
produce a more sparse covariance. There were 678 stocks being
selected under these criteria. To remove the degree of temporal
Table 5
Average estimates of θ̂ by (5.3) for data generated from Model (6.2) and Model
(6.3), respectively. The true parameter values in Model (6.2) and Model (6.3) are,
respectively, (θ1, θ2) = (1, 20) and (θ1, θ2) = (1, 0.4). Standard deviations are
provided inside the parentheses.

n p Model (6.2) Model (6.3)
θ̂1 θ̂2 θ̂1 θ̂2

50 50 0.89(0.49) 20.40(7.14) 0.94(0.31) 0.45(0.15)
50 100 0.92(0.44) 19.78(4.32) 0.96(0.27) 0.42(0.09)
50 200 0.96(0.31) 19.88(2.95) 0.99(0.17) 0.41(0.05)
50 400 0.96(0.27) 19.92(2.04) 1.00(0.07) 0.40(0.04)
50 600 0.97(0.27) 20.05(1.67) 1.00(0.05) 0.40(0.03)
50 1000 0.98(0.20) 19.98(1.22) 1.00(0.04) 0.41(0.03)

100 50 0.94(0.35) 20.22(4.83) 0.99(0.16) 0.42(0.12)
100 100 0.94(0.34) 20.05(2.87) 1.00(0.15) 0.41(0.09)
100 200 0.96(0.29) 20.03(1.97) 1.00(0.08) 0.40(0.07)
100 400 0.99(0.11) 20.04(1.32) 1.00(0.07) 0.40(0.04)
100 600 0.98(0.10) 19.97(1.06) 1.00(0.04) 0.40(0.02)
100 1000 0.99(0.09) 19.99(0.84) 1.00(0.03) 0.40(0.02)
200 50 0.96(0.29) 19.96(2.32) 1.00(0.07) 0.41(0.05)
200 100 0.96(0.21) 19.91(1.95) 1.00(0.05) 0.41(0.03)
200 200 0.97(0.20) 19.96(1.14) 1.00(0.04) 0.40(0.02)
200 400 0.99(0.13) 20.03(0.84) 1.00(0.03) 0.40(0.02)
200 600 0.98(0.12) 19.98(0.71) 1.00(0.02) 0.40(0.02)
200 1000 0.99(0.09) 20.02(0.50) 1.00(0.02) 0.40(0.01)

dependence, we considered weekly returns of each stock. We used
Xi to denote the standardized weakly returns of the stocks for
the ith week, i = 1, . . . , 246. The standardization was done by
dividing the weekly returns of stocks by their respective standard
deviations.

To achieve a decay of the covariance along the super-diagonals
so that (2.2) is satisfied, we arranged the stocks such that more
correlated stocks are aligned adjacently using the ’’Corrgram’’
algorithm of Friendly (2002). Fig. 1 presents the heatmap of the
sample covariance matrix for the weekly returns of the selected
678 stocks. It also plots ĥ(q) = D̂q/(p − q) against q, which shows
a decline as q increases.

We first considered testing H0 : Σ = Bk(Σ) for Σ being
banded. We also implemented Qiu and Chen (QC)’s and Cai and
Jiang (CJ)’s bandedness tests to compare with our proposed test.
Fig. 2 gives the test statistics and p-values for the two bandedness
tests for different bandwidths k. QC’s test suggested that Σ was
banded with bandwidth k = 396, while CJ’s test suggested that
Σ was banded at the bandwidth k = 634. We implemented
the proposed multiple testing based on the p-values of individual
test for H0,q with the FDR controlled at 5%. Specifically, we tested
H0 : Σ = Bk(Σ) by testing H0,q, q = k + 1, . . . , 6p/ log(p). Our
test suggested that Σ was a banded matrix with the bandwidth
k = 660.

Since the suggested bandwidth for Σ was very large, which
indicated that most of the super-diagonals of Σ are not zero,
we wanted to gain more knowledge about the specific non-zero
super-diagonal structure of the covariance matrix. In this consid-
eration, itwas beneficial for us to find out parametricmodels forΣ .
Inspired by the exponentially decay pattern we mentioned before,
we tested for a parametric exponential super-diagonal structure:

Dq(θ) = (p − q)θ2
1 exp (−2q/θ2) . (7.1)

The two-dimensional parameter θ = (θ1, θ2)
T is estimated by

the estimator given in (5.3). We chose r = 5 and used the
first five super-diagonals to estimate θ̂. The estimate was θ̂ =

(0.35, 367.5)T . We tested H0,q : Dq = (p−q)θ2
1 exp (−2q/θ2), q =

1, . . . , 6p/ log(p) by implementing the Bonferroni and FDR type
multiple testing procedures with the family-wise error rate and
the FDR controlled at 5%. Both the Bonferroni and FDR type tests
suggested that for q from 1 to 487, there was sufficient statistical
support for the exponential decay model (7.1).
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Fig. 1. Heatmaps (left panel) of the covariance matrix of the weekly returns of the 678 stocks, and estimated ĥ(q) (right panel) for q ≥ 1.
We then tested for a polynomial super-diagonal structure such
that

Dq(θ) = (p − q)θ2
1 q

−2θ2 (7.2)

where θ2 ∈ (0, 1). Following the same route for testing covariance
model (7.1), the estimated two-dimensional parameter was θ̂ =

(0.46, 0.147)T . However, neither the Bonferroni type test nor the
FDR test suggested the polynomial decaymodel (7.2)was adequate
to the data. Fig. 3 shows that the exponential covariance model
(7.1) can better describe the pattern of ĥ(q). In this context, the
evidence supporting model (7.1) was quite strong.

The parametric model for the super-diagonals may be used to
form an estimator for Σ , say Σ(θ̂) whose super-diagonals follow
the parametric model. An attraction of using Σ(θ̂) is that it is
easier to be inverted, whereas the sample covariance matrix is not
invertible, due to the fact that p = 678 > n = 246. Hence, Σ(θ̂)
can be used in the selection of optimal portfolio via Markowitz
theory. Furthermore, we may test the residual covariance matrix
after data prewhitening using statisticalmethods such as the factor
model. All we need to do is to calculate the estimated residuals and
then apply our method.

A natural extension of the study would be to consider if the
covariance of the stocks is block-diagonal rather than obeying a
decay along the super-diagonals. The broad economic sectors of the
stocks’ main operation may be used to determine the grouping of
the stocks, as did in Fan et al. (2015) and Aït-Sahalia and Xiu (2015)
when modeling the covariance of residuals. This would require
developing a test procedure for block-diagonal covariances, which
may be a future research topic.

Appendix A. Technical details

We provide the proofs for the main theorem as well as some
lemmas needed.

Lemma 1. Under Assumptions A1 and A2, for each given q, there
exists a positive constant M ′ such that maxi λi(Wq) ≤ M ′, where
λi(Wq), i = 1, . . . , p − q, are the eigenvalues of Wq.
Lemma 2. Under Assumptions A1–A4, for q = o(p) and any i =

1, . . . , n, we have,
p−q

l1,l2,l3,l4=1 E(Y
l1,l1+q
i Y l2,l2+q

i Y l3,l3+q
i Y l4,l4+q

i ) =

O

(p − q)2


.

The proof for Lemmas 1 and 2 can be found in He and Chen
(2016).

Proof of Proposition 1. For q = 1, . . . , p − 1, define

B1,q =
1
P2
n

p−q
l=1

∗
i,j

(Xi,lXi,l+q)(Xj,lXj,l+q),

B2,q =
1
P3
n

p−q
l=1

∗
i,j,k

Xi,lXk,l+q(Xj,lXj,l+q), and

B3,q =
1
P4
n

p−q
l=1

∗
i,j,k,m

Xi,lXj,l+qXk,lXm,l+q,

which are respectively U-statistics. Thus D̂q = B1,q − 2B2,q + B3,q.
As µ = 0 via the invariance argument, standard derivations show
that E(B1,q) =

p−q
l=1 σ 2

l,l+q, E(B2,q) = 0 and E(B3,q) = 0. Hence,
E(D̂q) = Dq.

In the following, we derive the variance of Bl,q for l =

1, 2, 3. As B1,q is a U-statistic, we derive the variance of B1,q
using the Hoeffding decompositions (Hoeffding, 1948). Zhong and
Chen (2011) have proved that the Hoeffding decomposition is
still applicable for high-dimensional data when the dimension p
diverges. Let Ui(q) =


Xi,1Xi,1+q, . . . , Xi,p−qXi,p

T , i = 1, . . . , n,
which are IID random vectors on Rp−q, and H(Ui(q),Uj(q)) =

Ui(q)TUj(q) be a function from Rp−q
×Rp−q to R. Hence, B1,q can be

written as

B1,q =
1n
2

 
Cn,2

H(Ui1(q),Ui2(q)),

where
n
s


=

n!
(n−s)!s! and Cn,s is the set of all distinct combinations

of {i1, . . . , is} from {1, 2, . . . , n}.
Let h1(u1) = E (H(u1,U2)) and h2(u1, u2) = H(u1, u2) be

the projection of H to lower-dimensional sample spaces and h =
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(a) Test statistics of Qiu and Chen test. (b) P-values of Qiu and Chen test.

(c) Test stateistics of Cai and Jiang test. (d) P-values of Cai and Jiang test.

Fig. 2. The test statistics (left panels) and P-values (right panels) of QC’s test and CJ’s test at different bandwidths.
E (H(U1,U2)) = Dq. Denote the mean vector of Ui(q) by Jq =
σ1,1+q, . . . , σp−q,p

T . Then it is obtained that h1(Ui(q)) = JTq Ui(q)
and h2(Ui(q),Uj(q)) = Ui(q)TUj(q). Then,

ζ1 =̂ Var(h1(Ui(q))) = JTq WqJq =

p−q
l1,l2=1

σl1,l1+qσl2,l2+qωl1,l2 ,

where Wq is the covariance matrix of Y⃗i(q) and Y⃗i(q) is defined in
Section 2.

Similarly, it can be shown that

ζ2 =̂ Var(h2(Ui(q),Uj(q))) = Var(Ui(q)TUj(q))

=

p−q
l1,l2=1

ω2
l1,l2 + 2

p−q
l1,l2=1

σl1,l1+qσl2,l2+qωl1,l2 .

According to Hoeffding decomposition,

Var(B1,q) =


n
2

−1 2
c=1


2
c


n − 2
2 − c


ζc
=
4
n

p−q
l1,l2=1

σl1,l1+qσl2,l2+qωl1,l2

+
2

n(n − 1)

p−q
l1,l2=1

ω2
l1,l2 . (A.1)

In (A.1), Var(B1,q) consists of two terms. If Dq = 0, the
first term equals zero and Var(B1,q) =

2
n(n−1)

p−q
l1,l2=1 ω2

l1,l2
.

In the general case that h(q) ≍ aq, it can be shown thatp−q
l1,l2=1 σl1,l1+qσl2,l2+qωl1,l2 ≍ (p − q)aq. For the second term of

Var(B1,q), we have
p−q

l1,l2=1 ω2
l1,l2

≍ (p − q) according to Lemma 1
and Assumption A4.

In order to obtain the order of Var(B1,q), which depends on q,
we consider three different regimes for q:

(i) If q = o(log(n)), the first term of Var(B1,q) is the leading term;
(ii) If aq ≍ 1/n, both terms of Var(B1,q) are of the same order;
(iii) If log(n) = o(q) and q = o(p), the second term of Var(B1,q) is

the leading term.
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Fig. 3. Estimated average signal h(q) on the super-diagonals for the stocks. The
black circles are ĥ(q) = D̂q/(p − q); the red stars are the fitted exponential
super-diagonal structure h(q; θ̂) = 0.352 exp (−2q/367.5) and the blue plus is
the fitted polynomial super-diagonal structure h(q; θ̂) = 0.462q−2×0.147 . (For
interpretation of the references to colour in this figure legend, the reader is referred
to the web version of this article.)

Hence, we have

Var(B1,q) ≍



(p − q)aq

n
,

for q = o(log(n)),
(p − q)aq

n
≍

p − q
n2

for q such that aq ≍ 1/n,
p − q
n2

,

for q such that log(n) = o(q) and q = o(p).

(A.2)

Similarly, by the Hoeffding decomposition, we can calculate
the variance of B2,q and B3,q, respectively. It can be shown that
both Var(B2,q) and Var(B3,q) are at a smaller order of Var(B1,q)
for q = o(p). See He and Chen (2016) for detailed derivation. By
Cauchy–Schwarz inequality, the covariances between B1,q, B2,q and
B3,q can be all ignored relative to Var(B1,q). Thus, the leading term
of Var(D̂q) is given by Var(B1,q) in (A.1). �

Proof of Theorem 1. As B1,q is the leading order term of D̂q, in
order to prove the asymptotic normality of D̂q, it is sufficient to
prove that, as n and p → ∞,

B1,q − E(B1,q)
Var(B1,q)

d
→ N(0, 1).

We establish it using themartingale central limit theorem (Hall
and Heyde, 1980). Let F0 = {∅, Ω} and Ft = σ {X1, . . . , Xt} be the
σ -field generated by {X1, . . . , Xt}, and Et(·) denote the conditional
expectation with respect to Ft and E0(·) = E(·). Write Lq,t =

Et

B1,q


− Et−1


B1,q


and ν2

q,t = Et−1

L2q,t

. Then B1,q − E(B1,q) =n

t=1 Lq,t . It can be shown that for every n, {

Lq,t , Ft


: t =

1, . . . , n} forms a martingale difference array.
According to Hall and Heyde (1980), it suffices to show that as

n and p → ∞,

n
t=1

ν2
q,t

Var(B1,q)

p
→ 1 (A.3)
and

n
t=1

E(L4q,t)

Var2(B1,q)
→ 0. (A.4)

To establish (A.3) and (A.4), we first express Lq,t and ν2
q,t

explicitly. Specifically,

Lq,t = (Et − Et−1) B1,q

=
1
P2
n

p−q
l=1

∗
i,j

(Et − Et−1) (Xi,lXi,l+q)(Xj,lXj,l+q)

=
2

n(n − 1)


i≠t

p−q
l=1

(Et − Et−1) (Xi,lXi,l+q)(Xt,lXt,l+q).

Since (Et − Et−1) (Xi,lXi,l+q)(Xj,lXj,l+q) = 0 for all j ≠ i exceptwhen
j = t or i = t .

Note that for i > t ,
p−q
l=1

(Et − Et−1) (Xi,lXi,l+q)(Xt,lXt,l+q)

=

p−q
l=1

σl,l+q

Xt,lXt,l+q − σl,l+q


,

and for i ≤ t ,

p−q
l=1

(Et − Et−1) (Xi,lXi,l+q)(Xt,lXt,l+q)

=

p−q
l=1

Xi,lXi,l+q

Xt,lXt,l+q − σl,l+q


.

Utilizing these two facts and invoking the notation Y l1,l2
t =

Xt,l1Xt,l2 − σl1,l2 , we have

Lq,t =
1
P2
n


i≠t

 p−q
l=1

σl,l+q

Xt,lXt,l+q − σl,l+q



+

t−1
i=1

 p−q
l=1

Xi,lXi,l+q

Xt,lXt,l+q − σl,l+q



−

t−1
i=1

 p−q
l=1

σl,l+q

Xt,lXt,l+q − σl,l+q



=
2
n

p−q
l=1

σl,l+qY
l,l+q
t +

2
n(n − 1)

p−q
l=1

Y l,l+q
t Q l,l+q

t−1 . (A.5)

by rearranging terms in the last two terms of (A.5), where Q l1,l2
t−1 =t−1

i=1 Y l1,l2
i . From now on, we will conduct the asymptotic analysis

based on Y l1,l2
t , l1, l2 = 1, . . . , p, instead of Xt,l, l = 1, . . . , p.

Under the notation Y l1,l2
t , we have

n
t=1

ν2
q,t =

4
n2

n
t=1

p−q
l1,l2=1

σl1,l1+qσl2,l2+qωl1,l2

+
4

n2(n − 1)2

n
t=1

p−q
l1,l2=1

ωl1,l2Q
l1,l1+q
t−1 Q l2,l2+q

t−1

+
8

n2(n − 1)

n
t=1

p−q
l1,l2=1

σl1,l1+qωl1,l2Q
l2,l2+q
t−1 . (A.6)
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It is easy to check that E
n

t=1 ν2
q,t


= Var(B1,q). In order

to derive (A.3), it is enough to show that Var
n

t=1 ν2
q,t


=

o(Var2(B1,q)). Specifically, denote the three parts of ν2
q,t in (A.6) by

I1, I2 and I3, respectively. We first show that the variances of I2 and
I3 are at a smaller order of Var2(B1,q).

Let Vi,j =
p−q

l1,l2=1 ωl1,l2


Y l1,l1+q
i Y l2,l2+q

i − ωl1,l2δi,j


, where δi,j

is the indicator function taking the value 1 for i = j and the value
0 otherwise. Since E(I2) =

2
n(n−1)

p−q
l1,l2=1 ω2

l1,l2
, then,

I2 − E(I2) =

n−1
i,j=1

4(n − max{i, j})
n2(n − 1)2

Vi,j.

Thus,

Var (I2) =
8(2n − 1)
n3(n − 1)3

Var(Vi,i)

+
8(n − 2)
n3(n − 1)2


Var(Vi,j) + Cov(Vi,j, Vj,i)


= O


(p − q)2

n5


+ O


(p − q)

n4


since for i = 1, . . . , n, according to Assumption A2 and Lemma 1,

Var(Vi,i) =

p−q
l1,l2=1

p−q
l3,l4=1

ωl1,l2ωl3,l4E

Y l1,l1+q
i Y l2,l2+q

i Y l3,l3+q
i Y l4,l4+q

i


−

p−q
l1,l2=1

p−q
l3,l4=1

ωl1,l2ωl3,l4ωl1,l2ωl3,l4

= O

(p − q)2


and for i ≠ j,

Var(Vi,j) = Cov(Vi,j, Vj,i) = tr(W 4
q ) = O(p − q).

Considering the order of Var(B1,q) which is specified in (A.2) in
different regimes, we have Var (I2) = o


Var2(B1,q)


for q such that

(i) q = o(log(n)), (ii) aq ≍ 1/n and (iii) log(n) = o(q) and q = o(p).
Similarly, let Si =

p−q
l1,l2=1 σl1,l1+qωl1,l2Y

l2,l2+q
i . Then, I3 can be

written as

I3 =

n−1
i=1

8(n − i)
n2(n − 1)

Si.

Thus, we have Var(I3) =
32(2n−1)
3n3(n−1)

Var(Si), where

Var(Si) =
1

(p − q)2

p−q
l1,l2=1

p−q
l3,l4=1

σl1,l1+qσl3,l3+qωl1,l2ωl3,l4ωl2,l4 ,

=
1

(p − q)2
JTq W

3
q Jq =

1
(p − q)2

tr

W 3

q JqJ
T
q


≤

1
p − q

tr(W 3
q )h(q) ≤ M3aq,

and the last inequality holds since tr(W 3
q ) =

p−q
l=1 λ3

l (Wq) ≤

M3(p − q).
Therefore, since for q such that (i) q = o(log(n)) and (ii) aq ≍

1/n, Var(B1,q) ≍ (p − q)aq/n, we have Var(I3) = o

Var2(B1,q)


.

On the other hand, for q such that log(n) = o(q) and q = o(p), we
have Var(B1,q) ≍ (p − q)/n2 and

Var (I3)
Var2(B1,q)

≤ naq → 0.

According to Cauchy–Schwarz’s inequality, since both Var(I2)
and Var(I3) are smaller order of Var2(B1,q) for q = o(p), the
covariance between I2 and I3 is also smaller order of Var2(B1,q).
Thus, this completes the proof of (A.3).

To establish (A.4), write

Lq,t =
2
n

p−q
l=1

σl,l+qY
l,l+q
t

+
2

n(n − 1)

p−q
l=1

Y l,l+q
t Q l,l+q

t−1 =̂ At + Bt , say.

Notice that
n

t=1

E(L4q,t) =

n
t=1

E(A4
t ) + 4

n
t=1

E(A3
t Bt)

+ 6
n

t=1

EA2
t B

2
t + 4

n
t=1

E(AtB3
t ) +

n
t=1

E(B4
t ) (A.7)

According to Lemma 1 and Assumption A4, it can be shown
that each term in (A.7) is of smaller order of Var2(B1,q). Please
see He and Chen (2016) for more details. This completes the proof
of (A.4). �

Proof of Proposition 2. The ratio consistency of V̂p,q,1 and V̂p,q,2 is
established by calculating their means and variances, respectively.
Please see He and Chen (2016) for detailed proof. �

Proof of Theorem 2. Under the alternative H1,q, the power of the
test is

βq,α = Pr


D̂q
2V̂p,q,2/n(n − 1)

> z1−α

Dq ≠ 0


= Pr

D̂q − Dq

σD̂q

> z1−α


2V̂p,q,2/n(n − 1)

σD̂q

− δnp,q

Dq ≠ 0


≥ Pr

D̂q − Dq

σD̂q

> z1−α


V̂p,q,2

Vp,q,2
− δnp,q

Dq ≠ 0


, (A.8)

since Vp,q,1 ≥ 0 due to the fact thatWq is nonnegative definite.
According to Proposition 2, for any η, Pr(Bη) → 1 where Bη =

{V̂p,q,2 < Vp,q,2 (1 + η)} for q = o(p), as n and p go to infinity. That
is, for any ε > 0, there exist positive integers n1 and p1, such that
for all n > n1 and p > p1, Pr(Bη) > 1 − ε. Hence, from (A.8), we
have

βq,α ≥ Pr

 D̂q − Dq

σD̂q

> z1−α


V̂p,q,2

Vp,q,2
− δnp,q, Bη


≥ Pr


D̂q − Dq

σD̂q,2
> z1−α(1 + η) − δnp,q


− Pr(Bc

η).

Then, from Theorem 1,

lim inf
n,p→∞

βq,α ≥ lim inf
n,p→∞

Pr


D̂q − Dq

σD̂q

> z1−α(1 + η) − δnp,q


− lim sup

n,p→∞

Pr(Bc
η)

≥ 1 − Φ

z1−α(1 + η) − lim inf

n,p→∞
δnp,q


− ε.

By letting ε and η → 0, we have

lim inf
n,p→∞

βq,α ≥ 1 − Φ


z1−α − lim inf

n,p→∞
δnp,q


. �



294 J. He, S.X. Chen / Journal of Econometrics 194 (2016) 283–297
Proof of Theorem 3. The convergence rate of θ̂ is established in
two steps. The first step in the proof shows that θ̂

p
→ θ0. And the

second step takes the Taylor expansion of the first-order condition
for θ̂ and shows that

√
np(θ̂ − θ0) = Op(1).

Step 1(Consistency): From Proposition 1, it is shown that for
fixed θ,

EGr(θ) =

(D1(θ0) − D1(θ))/(p − 1), . . . ,

(Dr(θ0) − Dr(θ))/(p − r)
T

,

and Var(Gr(θ)) is an r × r matrix with the (i, j)th element being
Cov(D̂i, D̂j)/(p − i)(p − j) defined in (A.20).

Analogous derivation to Proposition 1 shows that for i, j =

1, . . . , r ,

Cov(D̂i, D̂j) ≍ (p − max{i, j})/n.

Thus, we have Var(Gr(θ)) = O (1/np) for any fixed θ. It is shown
that, for any θ ∈ Θ , by Chebyshev’s inequality,

Pr (∥Gr(θ) − EGr(θ)∥2 > ε)

≤
E∥Gr(θ) − EGr(θ)∥

2
2

ε2

=
1
ε2

E

tr((Gr(θ) − EGr(θ))(Gr(θ) − EGr(θ))

T )


=
1
ε2

tr (Var(Gr(θ))) = O

(np)−1

Thus, Pr (∥Gr(θ) − EGr(θ)∥2 > ε) → 0 as n, p → ∞, and for any
θ ∈ Θ , Gr(θ)

p
→ EGr(θ).

It can be shown that the convergence in probability of Gr(θ)
to EGr(θ) is uniform in θ using analogous derivation to Bosq
(1996), see He and Chen (2016) for more details. Hence, for
any ε > 0, we have Pr


|GT

r (θ0)Gr(θ0)| > ε/2


→ 0 and

Pr

|GT

r (θ̂)Gr(θ̂) − EGT
r (θ̂)EGr(θ̂)| > ε/2


→ 0. Thus

Pr

|GT

r (θ̂)Gr(θ̂) − EGT
r (θ̂)EGr(θ̂)| + |GT

r (θ0)Gr(θ0)| > ε


→ 0.

(A.9)

Note that

|EGT
r (θ̂)EGr(θ̂)|

≤ |GT
r (θ̂)Gr(θ̂) − EGT

r (θ̂)EGr(θ̂)| + |GT
r (θ̂)Gr(θ̂)|

≤ |GT
r (θ̂)Gr(θ̂) − EGT

r (θ̂)EGr(θ̂)| + |GT
r (θ0)Gr(θ0)|, (A.10)

where the second inequality holds since GT
r (θ̂)Gr(θ̂) ≤ GT

r (θ0)Gr

(θ0). Hence, (A.9) and (A.10) imply that Pr

|EGT

r (θ̂)EGr(θ̂)| > ε


→ 0.
Under Assumption C1, for any small neighborhood B(θ0) of θ0,

there exists a δ > 0, such that |EGT
r (θ)EGr(θ)| > δ for any θ ∈

Bc(θ0). Therefore, Pr(θ̂ ∈ B(θ0)) → 1. Since B(θ0) is an arbitrary
neighborhood of θ0, we have θ̂

p
→ θ0.

Step 2(Convergence Rate): The first order condition for θ̂ is that

∇θGT
r (θ̂)Gr(θ̂) = 0.

Let f (θ) = ∇θGT
r (θ)Gr(θ), which is a d-dimensional vector valued

function. Take the second order Taylor expansion to f (θ̂) at θ0 so
that

0 = f (θ0) + ∇θ f (θ0)(θ̂ − θ0)

+
1
2


Id ⊗ (θ̂ − θ0)

T

∇

2
θ f (θ̃)(θ̂ − θ0), (A.11)
where θ̃ is on the line segment between θ̂ and θ0 and ∇θ f (θ0)
and ∇

2
θ f (θ0) are the first and second order derivatives of f (θ) with

respect to θ evaluated at θ0, which can be explicitly expressed as

∇θ f (θ0) = ∇θGT
r (θ0)∇θGr(θ0) +

r
i=1

g(θ0; i)∇2
θ g(θ0; i)

and

∇
2
θ f (θ̃) =

∇
2
θ f1(θ̃)

...

∇
2
θ fd(θ̃)

 , (A.12)

where ∇
2
θ fj(θ̃) is the Hessian matrix of fj(θ) evaluated at θ̃ for

j = 1, . . . , d.
It is noted that

∇θGT
r (θ0)∇θGr(θ0) =

r
i=1

∇θDi(θ0)∇θDT
i (θ0)/(p − i)2 ≍ 1 (A.13)

according to Assumption C2 (iii). For the second term in the
expression of ∇θ f (θ0) in (A.12), since g(θ0; q) = (D̂q − Dq(θ0))/
(p − q), we have
r

i=1

g(θ0; i)∇2
θ g(θ0; i) =

r
i=1

g(θ0; i)
∇

2
θDi(θ0)

p − i
.

Note that E(g(θ0; i)) = 0 and Var(g(θ0; i)) ≍ 1/(n(p − i)) for
i = 1, . . . , r . According to Assumption C2 (iii), ∇2

θDi(θ0)/(p − i) is
bounded. Since r is fixed,wehave

r
i=1 g(θ0; i)∇2

θ g(θ0; i) = op(1).
Combining these two terms, ∇θ f (θ0) = ∇θGT

r (θ0)∇θGr(θ0)(1 +

op(1)) = O(1). It can be shown that the remainder term in (A.11)
is at higher order than the first order term.

Hence, (A.11) can be written as

0 = f (θ0) +

∇θGT

r (θ0)∇θGr(θ0)

(θ̂ − θ0)(1 + op(1)).

Solving for θ̂ − θ0 and multiplying by
√
np, we get

√
np(θ̂ − θ0) = −


∇θGT

r (θ0)∇θGr(θ0)
−1

× ∇θGT
r (θ0)

√
npGr(θ0)(1 + op(1)). (A.14)

Since E(Gr(θ0)) = 0, the leading order term has zero mean and
its variance

Var


∇θGT
r (θ0)∇θGr(θ0)

−1
∇θGT

r (θ0)
√
npGr(θ0)


=

∇θGT

r (θ0)∇θGr(θ0)
−1 

np∇θGT
r (θ0)Var(Gr(θ0))∇θGr(θ0)


×

∇θGT

r (θ0)∇θGr(θ0)
−1

. (A.15)

According to (A.13), since∇θGT
r (θ0)∇θGr(θ0) ≍ 1, we only need

to work on ∇θGT
r (θ0)Var(Gr(θ0))∇θGr(θ0). Using the expression of

Cov

D̂i, D̂j


in (A.20), we have

∇θGT
r (θ0)Var(Gr(θ0))Gr(θ0)

=

r
i,j=1

1
(p − i)(p − j)

Cov

D̂i, D̂j


∇θDi(θ0)∇θDT

j (θ0)

=
4
n

r
i,j=1

1
(p − i)(p − j)

×

p−i
l1=1

p−j
l2=1

σl1,l1+iσl2,l2+jω(l1, l2; i, j)∇θDi(θ0)∇θDT
j (θ0)
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+
2

n(n − 1)

r
i,j=1

1
(p − i)(p − j)

×

p−i
l1=1

p−j
l2=1

ω2(l1, l2; i, j)∇θDi(θ0)∇θDT
j (θ0). (A.16)

It is sufficient to establish the order for the two terms in
(A.16). It can be shown that np∇θGT

r (θ0)Var(Gr(θ0))Gr(θ0) = O(1).
Detailed derivation is available in He and Chen (2016). From (A.14)
and (A.15), we have

√
np(θ̂−θ0) = Op(1). This completes the proof

for Theorem 3. �

Proof of Theorem 4. Note that

D̂q − Dq(θ̂) = (D̂q − Dq(θ0)) − (Dq(θ̂) − Dq(θ0)). (A.17)

Apply the Mean Value Theorem to Dq(θ̂) − Dq(θ0),

Dq(θ̂) − Dq(θ0) = ∇θDT
q (θ1)(θ̂ − θ0),

where θ1 is between θ̂ and θ0. As θ̂
p

→ θ0,

Dq(θ̂) − Dq(θ0) = ∇θDT
q (θ0)(θ̂ − θ0)(1 + op(1)). (A.18)

Combine (A.18) with (A.14),

Dq(θ̂) − Dq(θ0) = ∇θDT
q (θ0)


∇θGT

r (θ0)∇θGr(θ0)
−1

×∇θGT
r (θ0)Gr(θ0)(1 + op(1)). (A.19)

Hence, substituting (A.19) into (A.17), we have the following two
scenarios:

(i) if q = 1, . . . , r , D̂q−Dq(θ̂) = uq,r,1(θ0)Gr(θ0)(1+op(1)), where
uq,r,1(θ0) is defined in (5.5); and

(ii) if q > r and q = o(p), D̂q − Dq(θ̂) = uq,r,2(θ0)Fq,r(θ0)(1 +

op(1)), where Fq,r(θ0) =

GT
r (θ0), g(θ0; q)

T and uq,r,2(θ0) is
defined in (5.6).

Therefore, the asymptotic variance of D̂q −Dq(θ̂) is determined
by

σ 2
q,r =


uq,r,1(θ0)Var (Gr(θ0))uT

q,r,1(θ0), if q = 1, . . . , r,
uq,r,2(θ0)Var


Fq,r(θ0)


uT
q,r,2(θ0), if q > r and q = o(p).

Thus, it is sufficient to establish the asymptotic normality
of σ−1

q,r (D̂q − Dq(θ̂)). Using the same technique in the proof of
Theorem 1, for q = 1, . . . , r , write

Gr(θ0) =

n
t=1


1

p − 1
L1,t , . . . ,

1
p − r

Lr,t

T

=̂

n
t=1

ξq,t ,

where Lq,t is defined in the proof of Theorem 1. Then, we have
D̂q − Dq(θ̂) =

n
t=1 uq,r,1(θ0)ξq,t . It can be shown that for every

n, (uq,r,1(θ0)ξq,t , Ft): t = 1, . . . , n forms a martingale difference
array.

Using the martingale central limit theorem (Hall and Heyde,
1980), it can be shown that as n and p → ∞, the following two
conditions hold:

n
t=1

Et−1

(uq,r,1(θ0)ξq,t)

2


uq,r,1(θ0)Var (Gr(θ0))uT
q,r,1(θ0)

p
→ 1,

and
n

t=1
E

(uq,r,1ξq,t)

4



uq,r,1(θ0)Var (Gr(θ0))uT

q,r,1(θ0)
2 → 0.
Hence, σ−1
q,r (D̂q − Dq(θ̂))

d
→ N(0, 1) for q = 1, . . . , r . The case for

q > r and q = o(p) can be established similarly. This completes
the proof of Theorem 4. �

Before proceeding to the proof of Proposition 3, we introduce
the estimator for σ 2

q,r . According to the definitions of σ 2
q,r , it

suffices to estimate Var(Gr(θ0)) and Var(Fq,r(θ0)). Since r is
fixed, the covariance matrices of Gr(θ0) and Fq,r(θ0) can be
estimated element-wisely. Taking regime (i) as an example, write
Var(Gr(θ0)) = (Var(Gr(θ0))(i, j))r×r . Then (Var(Gr(θ0))) (q, q) =

σ 2
D̂q

/(p − q)2, which can be estimated by

( Var(Gr(θ0)))(q, q) =
4

n(p − q)2
V̂p,q,1 +

2
n(n − 1)(p − q)2

V̂p,q,2

as outlined in Section 3. Similarly, for i ≠ j, the (i, j)th element of
Var(Gr(θ0)) can be expressed as

(Var(Gr(θ0))) (i, j)

=
4

n(p − i)(p − j)

p−i
l1=1

p−j
l2=1

σl1,l1+iσl2,l2+jω(l1, l2; i, j)

+
2

n(n − 1)(p − i)(p − j)

p−i
l1=1

p−j
l2=1

ω2(l1, l2; i, j)

=̂
4

n(p − i)(p − j)
Ci,j,1 +

2
n(n − 1)(p − i)(p − j)

Ci,j,2, say,

(A.20)

where ω(l1, l2; i, j) = Cov(Y l1,l1+i
t , Y l2,l2+j

t ). Hence, Ci,j,1 and Ci,j,2
can be estimated respectively by

Ĉi,j,1 =

p−i
l1=1

p−j
l2=1

∗
s,t,v

1
P3
n
(X̃s,l1 X̃s,l1+i)(X̃t,l2 X̃t,l2+q)

×


X̃v,l1 X̃v,l1+i − σ̂

(s,t,v)
l1,l1+i

 
X̃v,l2 X̃v,l2+j − σ̂

(s,t,v)
l2,l2+q


and

Ĉi,j,2 =
1
P2
n

∗
(s,t)

p−i
l1=1

p−j
l2=1

(X̃s,l1 X̃s,l1+q − σ̂
(s,t)
l1,l1+i)(X̃s,l2 X̃s,l2+j − σ̂

(s,t)
l2,l2+j)

×(X̃t,l1 X̃t,l1+q − σ̂
(s,t)
l1,l1+i)(X̃t,l2 X̃t,l2+j − σ̂

(s,t)
l2,l2+j).

Therefore, (Var(Gr(θ0))) (i, j) is estimated by

( Var(Gr(θ0)))(i, j) =
4Ĉi,j,1

n(p − i)(p − j)
+

2Ĉi,j,2

n(n − 1)(p − i)(p − j)
.

Define Var(Gr(θ0)) = ( Var(Gr(θ0)))(i, j) as the matrix consisting
of estimators for each elements of Var(Gr(θ0)). Thus,

σ̂ 2
q,r = uq,r,1(θ̂) Var(Gr(θ0))uT

q,r,1(θ̂).

In regime (ii), for q > r and q = o(p), write Var(Fq,r(θ0)) as

Var(Fq,r(θ0))

=


Var(Gr(θ0)), Cov(Gr(θ0), g(θ0; q))

CovT (Gr(θ0), g(θ0; q)), Var(g(θ0; q))


,

where Cov(Gr(θ0), g(θ0; q)) is an r × 1 vector with its ith element
being

Cov(g(θ0; i), g(θ0; q))

=
4

n(p − i)(p − q)
Ci,q,1 +

2
n(n − 1)(p − i)(p − q)

Ci,q,2.

Similarly, Cov(g(θ0; i), g(θ0; q)) is estimated by
Cov(g(θ0; i), g(θ0; q)), which replaces Ci,q,1 and Ci,q,2 with Ĉi,q,1
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and Ĉi,q,2, respectively. Define an r×1 vector Cov(Gr(θ0), g(θ0; q))
whose ith element is Cov(g(θ0; i), g(θ0; q)). In addition,
Var(g(θ0; q)) can be estimated by Var(g(θ0; q)) =

4
n(p−q)2

V̂p,q,1 +

2
n(n−1)(p−q)2

V̂p,q,2. Thus, the estimator for Var(Fq,r(θ0)) is defined by

Var(Fq,r(θ0))

=


Var(Gr(θ0)), Cov(Gr(θ0), g(θ0; q))
CovT (Gr(θ0), g(θ0; q)), Var(g(θ0; q))


,

and then

σ̂ 2
q,r = uq,r,2(θ̂) Var(Fq,r(θ0))uT

q,r,2(θ̂).

Proof of Proposition 3. The ratio consistency of Ĉi,j,1 and Ĉi,j,2 is
established via analogous derivation to the proof of Proposition 2
by calculating the means and variances of Ĉi,j,1 and Ĉi,j,2,
respectively. As r is fixed, Var(Gr(θ0)) and Var(Fq,r(θ0)) are both
consistent to their population counterparts. On the other hand,
since θ̂

p
→ θ0, we have uq,r,1(θ̂)

p
→ uq,r,1(θ0) and uq,r,2(θ̂)

p
→

uq,r,2(θ0). Combining these two points, we have σ̂ 2
q,r

p
→ σ 2

q,r . This
completes the proof for Proposition 3. �

Proof of Theorem 5. The proof parallels to the proof of Theorem3.
We only show the consistency of θ̂ to θ∗ under H1. In the proof of
Theorem 3, we have shown that Gr(θ)

p
→ EGr(θ) uniformly in θ.

Hence, for any ε > 0, we have

Pr{|GT
r (θ̂)Gr(θ̂) − EGT

r (θ̂)EGr(θ̂)| + |GT
r (θ∗)Gr(θ∗)

− EGT
r (θ∗)EGr(θ∗)| > ε.}.

Note that

|EGT
r (θ̂)EGr(θ̂) − EGT

r (θ∗)EGr(θ∗)|

≤ |GT
r (θ̂)Gr(θ̂) − EGT

r (θ̂)EGr(θ̂)|

+ |GT
r (θ̂)Gr(θ̂) − EGT

r (θ∗)EGr(θ∗)|

≤ |GT
r (θ̂)Gr(θ̂) − EGT

r (θ̂)EGr(θ̂)|

+ |GT
r (θ∗)Gr(θ∗) − EGT

r (θ∗)EGr(θ∗)|,

where the second inequality holds since GT
r (θ̂)Gr(θ̂) ≤ GT

r (θ∗)Gr

(θ∗). Thus, it implies that Pr{|EGT
r (θ̂)EGr(θ̂) − EGT

r (θ∗)EGr(θ∗)|
> ε} → 0.

However, under Assumption C3, for any small neighborhood
B(θ∗) of θ∗, there exists a δ > 0, such that |EGT

r (θ)EGr(θ) −

EGT
r (θ∗)EGr(θ∗)| > δ for any θ ∈ Bc(θ∗). Therefore, Pr(θ̂ ∈

B(θ∗)) → 1. Since B(θ∗) is an arbitrary neighborhood of θ∗, we
have θ̂

p
→ θ∗.

The convergence rate is established similarly to Step 2 in the
proof of Theorem 3 by substituting θ0 by θ∗. This completes the
proof. �

Proof of Theorem 6. For q = o(p), the rejection probability of the
qth individual test under H1,q : Dq ≠ Dq(θ) is

βq,α = Pr


|D̂q − Dq(θ̂)|

σ̂q,r
> z1−α/2

H1,q



= Pr

D̂q − Dq

σq,r
> z1−α/2

σ̂q,r

σq,r
−

Dq − Dq(θ∗)

σq,r

−
Dq(θ∗) − Dq(θ̂)

σq,r

H1,q



+ Pr

D̂q − Dq

σq,r
< zα/2

σ̂q,r

σq,r
−

Dq − Dq(θ∗)

σq,r

−
Dq(θ∗) − Dq(θ̂)

σq,r

H1,q


=̂ βq,α,1 + βq,α,2.

Since θ̂
p

→ θ∗ under H1, we have σ−1
q,r |Dq(θ∗) − Dq(θ̂)| = op(δ∗

np,q)
by the mapping theorem. Similar to the proof of Theorem 2, when
δ∗
np,q → ∞, if Dq − Dq(θ∗) > 0, we have

lim inf
n,p→∞

βq,α,1 ≥ 1 − Φ


z1−α/2 − lim inf

n,p→∞
δ∗

np,q


→ 1

and

lim inf
n,p→∞

βq,α,2 ≥ Φ


zα/2 − lim inf

n,p→∞
δ∗

np,q


→ 0.

Otherwise, if Dq − Dq(θ∗) < 0 and δ∗
np,q → ∞, then

lim inf
n,p→∞

βq,α,1 ≥ 1 − Φ


z1−α/2 + lim inf

n,p→∞
δ∗

np,q


→ 0

and

lim inf
n,p→∞

βq,α,2 ≥ Φ


zα/2 + lim inf

n,p→∞
δ∗

np,q


→ 1.

Thus, if δ∗
np,q → ∞, we have βq,α = βq,α,1 + βq,α,2 → 1. �
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