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Abstract
We consider to model matrix time series based on a tensor canonical polyadic (CP)-decomposition. Instead of 
using an iterative algorithm which is the standard practice for estimating CP-decompositions, we propose a 
new and one-pass estimation procedure based on a generalized eigenanalysis constructed from the serial 
dependence structure of the underlying process. To overcome the intricacy of solving a rank-reduced 
generalized eigenequation, we propose a further refined approach which projects it into a lower- 
dimensional full-ranked eigenequation. This refined method can significantly improve the finite-sample 
performance. We show that all the component coefficient vectors in the CP-decomposition can 
be estimated consistently. The proposed model and the estimation method are also illustrated with both 
simulated and real data, showing effective dimension-reduction in modelling and forecasting matrix time 
series.
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1 Introduction
Let Yt = (yi,j,t) be a p × q matrix time series, i.e., there are pq recorded values at each time t from, for 
example, p individuals and over q indices or variables, and yi,j,t is then the value of the jth variable on 
the ith individual at time t. Given available observations Y1, . . . , Yn, the goal is to build a dynamic 
model for Yt and to forecast the future values Yn+ℓ for ℓ ≥ 1. With moderately large p and q, any direct 
attempts based on the time series ARMA framework are unlikely to be successful due to overparamet
rization. We seek a low-dimensional structure via a tensor canonical polyadic (CP) decomposition. To 
this end, we denote by Y the p × q × n tensor with Y1, . . . , Yn as its n frontal slices (Kolda & Bader, 
2009). Then yi,j,t is the (i, j, t)th element of Y. Conceptually, we decompose Y into two parts:

Y = X + E, (1) 

where all the dynamic structure of Y is reflected by X, and the frontal slices of E ≡ (εi,j,t) are matrix 
white noise, i.e., Cov(εi,j,t, εk,ℓ,s) = 0 for any t ≠ s. The key idea is to perform a CP-decomposition 
for X, i.e., to express it as a sum of rank one tensors (see (2)). This effectively represents the dynamic 
structure of matrix process Yt in terms of that of a vector process, and, hence, achieving an effective 
dimension-reduction in modelling the dynamic behaviour of the process.

The ‘workhorse’ method for CP-decompositions is the so-called alternative least squares (ALS) 
algorithm which is easy to understand and implement. See Section 3.4 of Kolda and Bader (2009)
and the references therein. However, it has obvious drawbacks. For example, an ALS algorithm 
takes many iterations to converge. It is not guaranteed to converge to the global minimum even 
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for moderately large p, q, or n. Furthermore, it also depends sensitively on the selection of the ini
tial values. Substantial effort has been made to improve the convergence and the performance of 
the ALS algorithm, including, among others, Anandkumar et al. (2014), Liu et al. (2014), 
Colombo and Vlassis (2016), Sun et al. (2017), Sharan and Valiant (2017), Wang and Song 
(2017), Zhang and Xia (2018) and Han and Zhang (in press).

We propose a new and one-pass estimation procedure in this paper. The new method is inspired 
by Sanchez and Kowalski (1990) which transforms a CP-decomposition into a generalized eigena
nalysis problem. While Sanchez and Kolwalski’s approach does not require iteration, it only works 
for the noise-free cases with E ≡ 0 in (1). In contrast, our new procedure eliminates the impact of 
the noise by incorporating the serial dependence into the estimation. Furthermore to overcome the 
intricacy in solving a generalized eigenequation defined by rank-reduced matrices (see Section 7.7 
of Golub & Van Load, 2013), we propose a new refined approach which projects 
the rank-reduced generalized eigenequation to a full-ranked lower-dimensional one which is, 
therefore, equivalent to a standard eigenequation. The numerical results in simulation also dem
onstrate the significant improvement in the finite-sample performance by this refined method.

Most existing literature on matrix time series is based on the factor modelling via the Tucker de
composition; see Chen and Chen (2019), Wang et al. (2019) and Chen et al. (2020). The key differ
ence between our approach and the Tucker decomposition-based approaches is twofold. First, a 
Tucker decomposition represents a matrix process as a linear combination of a smaller matrix process 
while a CP-decomposition is more canonical in the sense that it represents a matrix process in terms of 
a vector process; see also the real data example in Section 5.2. Second, a Tucker decomposition entails 
more conventional factor models, and, therefore, we only need to identify and estimate the factor 
loading spaces, for which the standard factor model methods (e.g., Chang et al., 2015; Lam & 
Yao, 2012) are applicable. However, for a CP-decomposition, we need to identify and estimate 
the component coefficient vectors precisely. Therefore, a radically new inference procedure is re
quired. The other approaches for modelling matrix time series include: the matrix-coefficient autor
egressive models of Chen et al. (2021), and the bilinear transformation segmentation method of Han 
et al. (in press). Han et al. (2021) models tensor time series also based on a CP-decomposition. But 
their approach is radically different from ours, as they estimate the CP-decomposition based on an 
iterative simultaneous orthogonalization algorithm with a warm-start initialization using the so- 
called composite principal component analysis for tensors; see Section 3 of Han et al. (2021). Note 
that our estimation is a one-pass procedure, and no iterations are required.

The rest of the paper is organized as follows. The matrix time series model based on a 
CP-decomposition is presented in Section 2. Section 3 deals with the model identification and 
presents the newly proposed estimation procedures. The asymptotic results, including the conver
gence rates for the estimated component vectors in the CP-decomposition, are presented in Section 
4. Numerical illustration with both simulated and real datasets is given in Section 5. All the tech
nical proofs are relegated to the online supplementary material.

Notations. For a positive integer m, write [m] = {1, . . . , m}, and denote by Im the m × m identity 
matrix. Let I(·) be the indicator function. For an m1 × m2 matrix H = (hi,j)m1×m2

, let ‖H‖2, 
rank(H), σmin(H), and vec(H) be, respectively, its spectral norm, its rank, its smallest singular val
ue, and a vector obtained by stacking together the columns of H. Specifically, if m2 = 1, we use 
|H|2 = (

􏽐m1
i=1 |hi,1|

2)1/2 to denote the ℓ2-norm of the m1 × 1 vector H. Also, denote by H⊤ and 
HH, respectively, the transpose and conjugate transpose of H. When rank(H) = m2, denote by 
H+, an m2 × m1 matrix, the Moore–Penrose inverse of H such that H+H = Im2 . When m1 = m2, 
denote by det(H) and tr(H) the determinant and the trace of H, respectively. Let ⊗ and ◦ denote 
the Kronecker product and the vector outer product, respectively. For any vector 
h = (h1, . . . , hm)⊤, we write Re(h) = {Re(h1), . . . , Re(hm)}⊤ and Im(h) = {Im(h1), . . . , Im(hm)}⊤, 
where Re(hi) and Im(hi) denote, respectively, the real part and the imaginary part of hi.

2 Model
We impose a low-dimensional dynamic structure in model (1) as follows:

Y =
􏽘d

ℓ=1

aℓ ◦ bℓ ◦ xℓ + E, (2) 
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where aℓ = (a1,ℓ, . . . , ap,ℓ)
⊤ and bℓ = (b1,ℓ, . . . , bq,ℓ)

⊤ are, respectively, p × 1 and q × 1 constant 
vectors, xℓ = (x1,ℓ, . . . , xn,ℓ)

⊤ is an n × 1 random vector, and 1 ≤ d < min(p, q) is an unknown in
teger. Put

A ≡ (ai,ℓ)p×d = (a1, . . . , ad) and B ≡ (b j,ℓ)q×d = (b1, . . . , bd).

Then componentwisely (2) admits the representation

yi,j,t =
􏽘d

ℓ=1

ai,ℓbj,ℓxt,ℓ + εi,j,t. (3) 

Hence the dynamic structure in Y is entirely determined by that of the d time series x1, . . . , xd. 
There is a clearly scaling indeterminacy in (2), as the triple (aℓ, bℓ, xℓ) can be replaced by 
(αℓaℓ, βℓbℓ, γℓxℓ) as long as αℓβℓγℓ = 1. We assume that all aℓ and bℓ are unit vectors (i.e., 
|aℓ|2 = |bℓ|2 = 1). Once aℓ and bℓ are specified, |xℓ|2 will be determined by (2) accordingly. Note 
that a1, . . . , ad (or b1, . . . , bd) are not required to be orthogonal with each other.

Model (2) is resulted from applying the CP-decomposition to X in (1), where d is the order of the 
CP-decomposition. Note that this decomposition is unique upto the scaling and permutation in
determinacy if R(A) +R(B) +R(X) ≥ 2d + 2, where X = (x1, . . . , xd) and 
R(·) = max {k : anyk columns of the matrix · are linear independent}. Such requirement provides 
a sufficient condition for the uniqueness (Kolda & Bader, 2009, p. 467). See also Theorems 1.5 
and 1.7 of Domanov and De Lathauwer (2014) for more refined results on the uniqueness of 
the CP-decomposition.

Though yi,j,t is a linear combination of xt,1, . . . , xt,d under (2), the factor representation of the 
model admits some special structure, i.e., the elements of the factor loading matrix are of the form 
of ai,ℓbj,ℓ; see (3). In fact, we need to identify and estimate all the vectors in the first term on the 
RHS of (2) precisely (upto the permutation and scaling indeterminacy). Therefore, the conventional 
factor model estimation methods such as Lam and Yao (2012) and Chang et al. (2015) do not apply.

The frontal slice equation of (2) admits the form

Yt =
􏽘d

ℓ=1

aℓ ◦ bℓxt,ℓ + εt =
􏽘d

ℓ=1

xt,ℓaℓb
⊤
ℓ + εt = AXtB⊤ + εt, (4) 

where Xt = diag(xt,1, . . . , xt,d) and εt denotes the p × q matrix with εi,j,t as its (i, j)th element. We 
impose the following regularity condition on the model.

Condition 1 It holds that rank(A) = d = rank(B). Furthermore, E(εt) = 0 for any t, E(εt ⊗ 
εs) = 0 for all t ≠ s, and E(xt,ℓεs) = 0 for any ℓ ∈ [d] and t ≤ s.

Remark 1 Write ft = (xt,1, . . . , xt,d)⊤. Model (4) is then equivalent to

vec(Yt) = (b1 ⊗ a1, . . . , bd ⊗ ad)ft + vec(εt). (5) 

This may entice to consider a factor model for the vector process vec(Yt) 
directly:

vec(Yt) = Cf̃t + ε̃t, (6) 

where C is a (pq) × d loading matrix, ̃ft is a d × 1 factor, and ε̃t is an error term. 
In comparison to (6), our model (4) has the following advantages: (a) The num
ber of parameters to be estimated in (4) is (p + q)d which is smaller than pqd, 
i.e., the number of parameters in (6), and (b) model (4) preserves the original 
column and row structures of the data while model (6) does not. More 
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precisely, the row and column variables of Yt are typically of different nature. 
For example, the rows stand for p individuals and the columns stand for q in
dices. Note that (4) implies Y·,j,t =

􏽐d
ℓ=1 b j,ℓaℓxt,ℓ + ε·,j,t, i.e., the dynamic part 

of the jth column Y·,j,t of Yt is a randomly weighted linear combination of 
a1, . . . , ad. By the symmetry, the dynamic part of any row of Yt is a randomly 
weighted linear combination of b1, . . . , bd. In contrast model (6) treats the 
rows and the columns of Yt on an equal footing; losing the original meaning 
and interpretation of the matrix process.

3 Methodology
3.1 Direct estimation for A, B, and d
Without loss of generality, we assume q ≤ p in this section, as A and B are on the equal footing in 
model (2); see also (3). Then both the identification and the estimation of A, B, and d essentially 
reduce to solving a generalized eigenequation defined by two rank-reduced q × q matrices.

3.1.1 Identification
Let B+ ≡ (b1, . . . , bd)⊤ be the Moore–Penrose inverse of B, i.e., b⊤

kbℓ = I(k = ℓ) for any k, ℓ ∈ [d]. 
Hence it follows from (4) that

Ytb
ℓ = xt,ℓaℓ + εtb

ℓ, ℓ ∈ [d]. (7) 

When εt ≡ 0, this leads to Ytb
ℓ = λYt+1bℓ with λ = xt,ℓ/xt+1,ℓ. Thus, bℓ can be obtained from solv

ing this generalized eigenequation. This is essentially the idea of Sanchez and Kowalski (1990). We 
proceed differently from this point onwards in order (a) to eliminate the impact of nonzero εt, (b) 
to increase the estimation efficiency by augmenting the information over time t, and (c) to improve 
the estimation performance in solving a generalized eigenequation with rank-reduced matrices.

Let ξt be a linear combination of Yt. For any k ≥ 1 and t ≥ k + 1, we define Ξt,k = E[{Yt − 
E(Y̅)}{ξt−k − E(ξ̅)}] with Y̅ = n−1􏽐n

t=1 Yt and ξ̅ = n−1􏽐n
t=1 ξt. Let

ΣY,ξ(k) =
1

n − k

􏽘n

t=k+1

Ξt,k (8) 

for any k ≥ 1. Furthermore, we write λt,k,ℓ = E[{ξt−k − E(ξ̅)}{xt,ℓ − E(x̅·,ℓ)}] with x̅·,ℓ = n−1􏽐n
t=1 xt,ℓ

for any k ≥ 1, t ≥ k + 1, and ℓ ∈ [d]. By (7) and Condition 1, it holds that Ξt,kbℓ = λt,k,ℓaℓ, which 
implies

ΣY,ξ(k)bℓ =
1

n − k

􏽘n

t=k+1

λt,k,ℓ

􏼠 􏼡

aℓ, ℓ ∈ [d]. (9) 

Then, we have

ΣY,ξ(2)bℓ = λ̃ℓΣY,ξ(1)bℓ with λ̃ℓ =
(n − 1)

􏽐n
t=3 λt,2,ℓ

(n − 2)
􏽐n

t=2 λt,1,ℓ
. (10) 

Write

K1,q = ΣY,ξ(1)⊤ΣY,ξ(1) and K2,q = ΣY,ξ(1)⊤ΣY,ξ(2).
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Hence the rows of B+ = (b1, . . . , bd)⊤ are the eigenvectors of the generalized eigenequation

K2,qb = λK1,qb. (11) 

This is a generalized eigenequation defined by rank-reduced matrices K1,q and K2,q. In general, the 
number of eigenvalues of a generalized eigenequation defined by rank-reduced matrices may be 0, 
finite or infinite; see Section 7.7 of Golub and Van Load (2013). However, since K1,q is positive 
definite with rank d, (11) admits exactly d eigenvalues. To verify this statement, recall min(p, q) > 
d and ΣY,ξ(1) = AΛB⊤ for some d × d diagonal matrix Λ. If the elements in the main diagonal of Λ 
are nonzero, together with Condition 1, we know rank(K1,q) = d. Hence K1,q = ΓCΓ⊤, where Γ is a 
q × q orthogonal matrix, and C = diag(c1, . . . , cd, 0, . . . , 0) with c1 ≥ · · · ≥ cd > 0. Then the char
acteristic equation of the generalized eigenequation (11) is

0 = det(K2,q − λK1,q) = det2(Γ)det(Γ⊤K2,qΓ − λC).

The RHS of the above equation is a polynomial in λ of order d, which, therefore, has d roots.
Let λ̃1, . . . , λ̃d specified in (10) be distinct. Then the rows of B+ can be identified by (11) upto the 

scaling and permutation indeterminacy. However, to specify B+ completely, both the length and 
direction of each row need to be determined precisely, which is beyond what can be learned from 
(11). Nevertheless the eigenvectors of (11) can identify the columns of A = (a1, . . . , ad) based on 
the following identity:

aℓ =
ΣY,ξ(1)bℓ

|ΣY,ξ(1)bℓ|2
, ℓ ∈ [d], (12) 

which is implied by (9). For A specified above, let A+ = (a1, . . . , ad)⊤ be its Moore–Penrose inverse. 
By the symmetry, the columns of B = (b1, . . . , bd) are uniquely identified by

bℓ =
ΣY,ξ(1)⊤aℓ

|ΣY,ξ(1)⊤aℓ|2
, ℓ ∈ [d]. (13) 

3.1.2 Estimation
With the available observations Y1, . . . , Yn, we define

􏽢ΣY,ξ(k) =
1

n − k

􏽘n

t=k+1

(Yt − Y̅)(ξt−k − ξ̅) (14) 

for k ≥ 1. When pq ≫ n, 􏽢ΣY,ξ(k) is no longer a consistent estimator for ΣY,ξ(k) under the spectral 

norm ‖ · ‖2. In the spirit of Bickel and Levina (2008), we select 􏽢Σk defined as follows for the esti
mate of ΣY,ξ(k):

􏽢Σk = Tδ1 {􏽢ΣY,ξ(k)}, (15) 

where Tδ1 (·) is a threshold operator Tδ1 (W) = {wi,jI(|wi,j| ≥ δ1)}m1×m2 
for any matrix W = 

(wi,j)m1×m2 
with the threshold level δ1 ≥ 0. We choose δ1 > 0 when pq ≫ n. When δ1 = 0, we 

have 􏽢Σk =􏽢ΣY,ξ(k), which is appropriate when, for example, p and q are fixed constants. Then 
􏽢K1,q =􏽢Σ⊤

1
􏽢Σ1 and 􏽢K2,q =􏽢Σ⊤

1
􏽢Σ2 provide the estimates of K1,q and K2,q, respectively.

Let λ̂1(􏽢K1,q) ≥ · · · ≥ λ̂q(􏽢K1,q) ≥ 0 be the eigenvalues of 􏽢K1,q. Since rank(K1,q) = d, following 
Chang et al. (2015), we can estimate d as
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d̂ = arg min j∈[R]
λ̂ j+1(􏽢K1,q) + cn

λ̂ j(􏽢K1,q) + cn

, (16) 

where R = ⌊αmin(p, q)⌋ for a prescribed constant α ∈ (0, 1), and cn → 0+ as n→∞. In practice, 
we may set α = 0.5. Note that the true eigenvalues of K1,q satisfy the condition 
λ1(K1,q) ≥ · · · ≥ λd(K1,q) > 0 = λd+1(K1,q) = · · · = λq(K1,q). Adding a small constant cn > 0 in (16) 

is to avoid the ratio ‘0/0’. Under some regularity conditions, d̂ defined in (16) is a consistent esti
mate for d in the sense that P(d̂ = d)→ 1 as n→∞.

Applying the spectral decomposition to 􏽢K1,q, we have 􏽢K1,q =􏽢Γ􏽢C􏽢Γ⊤, where 􏽢Γ = (γ̂1, . . . , γ̂q) is a 

q × q orthogonal matrix, and 􏽢C = diag(ĉ1, . . . , ĉq) with ĉ1 ≥ · · · ≥ ĉq ≥ 0. For d̂ specified in (16), 
we define

􏽥K1,q =
􏽘d̂

j=1

ĉjγ̂jγ̂
⊤
j , (17) 

which is a truncated version of 􏽢K1,q. Then rank(􏽥K1,q) = d̂. Let b̂1, . . . , b̂d̂ be the eigenvectors of the 
generalized eigenequation

􏽢K2,qb = λ􏽥K1,qb, (18) 

which is a sample version of (11). We can use the function geigen in the R-package geigen to 
solve (18). Then the columns of A can be estimated as

âℓ =
􏽢Σ1b̂ℓ

|􏽢Σ1b̂ℓ|2
, ℓ ∈ [d̂]. (19) 

Let 􏽢A+ = (â1, . . . , âd̂)⊤ be the Moore–Penrose inverse of 􏽢A = (â1, . . . , âd̂). Then the columns of B 
can be estimated as

b̂ℓ =
􏽢Σ⊤

1âℓ

|􏽢Σ⊤
1âℓ|2

, ℓ ∈ [d̂]. (20) 

The truncation of 􏽢K1,q given in (17) is necessary here for estimating the rows of B+. Note that 􏽢K1,q 

is a q × q matrix with q > d. Since rank(􏽢K1,q) may be larger than d̂ in finite samples, the generalized 

eigenequation 􏽢K2,qb = λ􏽢K1,qb may have more than d̂ eigenvectors. Since we do not know which 
eigenvalues are associated with our required eigenvectors, it will be extremely difficult (if not im

possible) for us to pick out b̂1, . . . , b̂d̂ from all the eigenvectors of 􏽢K2,qb = λ􏽢K1,qb.
Based on âℓ and b̂ℓ specified in (19) and (20), we define

􏽢H = (b̂1 ⊗ â1, . . . , b̂d̂ ⊗ âd̂).

By (5), we can recover Xt by 􏽢Xt = diag(x̂t,1, . . . , x̂t,d̂) with

(x̂t,1, . . . , x̂t,d̂)⊤ = 􏽢H+vec(Yt).

We need to point out that the eigenvalues of the generalized eigenequation (18) are not necessary 
to be real. Proposition 1 shows that its complex eigenvalues always occur in complex conjugate 
pairs.
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Proposition 1 Assume the eigenvalues of the generalized eigenequation (18) are distinct. If 

λ∗ ∈ C is a complex eigenvalue of (18) such that 􏽢K2,qb̂ℓ = λ∗􏽥K1,qb̂ℓ for some 

ℓ ∈ [d̂], then λ∗, the complex conjugate of λ∗, is also a complex eigenvalue of 
(18). More specifically, there exists some ℓ̃ ∈ [d̂] and a constant κ ∈ { − 1, 1} 

satisfying 􏽢K2,qb̂ℓ̃ = λ∗􏽥K1,qb̂ℓ̃, âℓ̃ = κâℓ, b̂ℓ̃ = κb̂ℓ, and x̂t,ℓ̃ = x̂t,ℓ, where âℓ, b̂ℓ, 

and x̂t,ℓ are the complex conjugate of âℓ, b̂ℓ, and x̂t,ℓ, respectively.

Assume the generalized eigenequation (18) has s real eigenvalues and d̂ − s complex eigenvalues. 
Since the complex eigenvalues always occur in complex conjugate pairs, d̂ − s is an even integer. 
Write d̂ − s = 2m. Let λ1, λ1, . . . , λm, λm be the d̂ − s complex eigenvalues, where λ1, . . . , λm are 
the complex conjugate of λ1, . . . , λm, respectively. For each j ∈ [m], there exist ℓj, ℓ̃j ∈ [d̂] such 

that the eigenvectors associated with λj and λj are, respectively, b̂ℓj and b̂ℓ̃j . By Proposition 1, there 

exists (κ1, . . . , κm) ∈ { − 1, 1}m such that âℓ̃j
= κjâℓj , b̂ℓ̃j

= κjb̂ℓj , and x̂t,ℓ̃j
= x̂t,ℓj for each j ∈ [m]. 

Then

􏽘m

j=1

(x̂t,ℓj âℓj b̂
⊤
ℓj

+ x̂t,ℓ̃j
âℓ̃j

b̂⊤
ℓ̃j

) ∈ R p×q.

Write {k1, . . . , ks} = [d̂] \ {ℓ1, ℓ̃1, . . . , ℓm, ℓ̃m}. Then b̂k1 , . . . , b̂ks are the eigenvectors of the gener
alized eigenequation (18) associated with the s real eigenvalues. Hence, âkj

∈ Rp, b̂kj
∈ Rq, and 

x̂t,kj
∈ R for each j ∈ [s]. To do prediction of Yt based on (4), we only need to model d̂ univariate 

time series {x̂t,k1
}, . . . , {x̂t,ks

}, {Re(x̂t,ℓ1 )}, {Im(x̂t,ℓ1 )}, . . . , {Re(x̂t,ℓm )}, {Im(x̂t,ℓm )}.

Remark 2 Solving a generalized eigenequation defined by rank-reduced matrices could be 
a complex computational task. See Section 7.7 of Golub and Van Load (2013). 
In principle, we can also estimate A+ first; leading to the estimate for B and then 
that for A. Technically this boils down to solving a generalized eigenequation 
defined by two p × p rank-reduced matrices, which is computationally more 
expensive and less stable by using the R-function geigen when p > q; often lead
ing to, for example, more than d̂ eigenvalues/vectors.

3.2 A refined estimation procedure
To overcome the complication in solving a rank-reduced generalized eigenequation, which plays 
the key role in the method proposed in Section 3.1, we propose a refinement which reduces the 
q-dimensional rank-reduced generalized eigenequation to a d-dimensional full-ranked one. 
Therefore, effectively the new refined method only requires to solve a d-dimensional 
eigenequation.

Simulation results in Section 5 indicate that this new procedure outperforms the direct estima
tion, proposed in Section 3.1.2, uniformly over various settings.

3.2.1 Identification
For a prescribed integer K ≥ 1, define

M1 =
􏽘K

k=1

ΣY,ξ(k)ΣY,ξ(k)⊤ and M2 =
􏽘K

k=1

ΣY,ξ(k)⊤ΣY,ξ(k) (21) 

with ΣY,ξ(k) defined as (8). Recall ΣY,ξ(k) = AGkB⊤, where Gk = (n − k)−1􏽐n
t=k+1 E[{Xt − 

E(X̅)}{ξt−k − E(ξ̅)}] is a d × d diagonal matrix with X̅ = n−1􏽐n
t=1 Xt and ξ̅ = n−1􏽐n

t=1 ξt; see (4). 
Then
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M1 = A
􏽘K

k=1

GkB⊤BGk

􏼠 􏼡

A⊤ and M2 = B
􏽘K

k=1

GkA⊤AGk

􏼠 􏼡

B⊤. (22) 

Since both p and q are much greater than d in practice, it is reasonable to impose the following 
assumption.

Condition 2 It holds that rank(M1) = d = rank(M2). Furthermore, the nonzero eigenval
ues of M1 and M2 are uniformly bounded away from zero.

Remark 3 Write G = (G⊤
1, . . . , G⊤

K)⊤. Then M1 = AG⊤(IK ⊗ B)⊤(IK ⊗ B)GA⊤, which implies 
rank(M1) = rank{(IK ⊗ B)GA⊤}. Notice that each Gk is a d × d diagonal matrix 
and (IK ⊗ B)GA⊤ = (AG1B⊤, . . . , AGKB⊤)⊤. It holds that 
d ≥ rank(G) ≥ rank{(IK ⊗ B)GA⊤} ≥ maxk∈[K] rank(AGkB⊤). Since 
ΣY,ξ(k) = AGkB⊤, rank(M1) = d provided that there exists some k ∈ [K] such 
that rank{ΣY,ξ(k)} = d. By the same argument, rank(M2) = d provided that there 
exists some k ∈ [K] such that rank{ΣY,ξ(k)} = d. Since rank(A) = d = rank(B) (see 
Condition 1), rank{ΣY,ξ(k)} = rank(Gk). Consequently, rank(M1) = d = 
rank(M2) if the elements in the main diagonal of some Gk are nonzero.

Perform the spectral decomposition:

M1 = PΛ1P⊤ and M2 = QΛ2Q⊤, 

where the columns of P and Q are, respectively, the d orthonormal eigenvectors corresponding to 
the d nonzero eigenvalues of M1 and M2, Λ1 and Λ2 are the diagonal matrices with the corre
sponding eigenvalues as the diagonal elements. This, together with (22), implies that

A = PU and B = QV, (23) 

where U and V are two d × d invertible matrices. Furthermore all the columns of U and V are unit 
vectors, which is implied by the assumption that all aℓ and bℓ are unit vectors.

To identify A and B, we only need to identify U and V, which can be solved from a generalized 
eigenequation with two full-ranked matrices. To this end, define d × d matrix process Zt = P⊤YtQ. 
It follows from (4) and (23) that

Zt = UXtV⊤ + Δt =
􏽘d

ℓ=1

xt,ℓuℓv⊤
ℓ + Δt, 

where Δt = P⊤εtQ is uncorrelated with {Xs}s≤t, uℓ and vℓ are, respectively, the ℓth column of U and 
V. Choose ηt to be a linear combination of Zt such that

ΣZ,η(k) =
1

n − k

􏽘n

t=k+1

E[{Zt − E(Z̅)}{ηt−k − E(η̅)}] (24) 

is full-ranked for k = 1, 2, where Z̅ = n−1􏽐n
t=1 Zt, and η̅ = n−1􏽐n

t=1 ηt. Then the same argument 
towards (11) implies that the rows of the d × d inverse matrix V−1 = (v1, . . . , vd)⊤ are the eigenvec
tors of the generalized eigenequation

ΣZ,η(1)⊤ΣZ,η(2)v = λΣZ,η(1)⊤ΣZ,η(1)v, (25) 

which has exactly d eigenvectors. Furthermore those d eigenvectors are unique upto the scaling 
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indeterminacy if the d eigenvalues associated with (25) are distinct. Parallel to (12) and (13), the 
columns of U = (u1, . . . , ud) and V = (v1, . . . , vd) can be identified as follows:

uℓ =
ΣZ,η(1)vℓ

|ΣZ,η(1)vℓ|2
and vℓ =

ΣZ,η(1)⊤uℓ

|ΣZ,η(1)⊤uℓ|2
(26) 

for each ℓ ∈ [d], where (u1, . . . , ud)⊤ is the inverse of U. With U and V specified above, A and B can 
be determined by (23). Write

J1 = {ΣZ,η(1)⊤ΣZ,η(1)}−1ΣZ,η(1)⊤ΣZ,η(2). (27) 

Proposition 2 Let Conditions 1 and 2 hold, and the eigenvalues of the d × d matrix J1 
specified in (27) be distinct. Then A and B are uniquely defined as in (23) 
upto the reflection and permutation indeterminacy, where the columns 
of U = (u1, . . . , ud) and V = (v1, . . . , vd) are defined as (26).

Remark 4 By the symmetry, we also know that u1, . . . , ud are the d eigenvectors of the 
generalized eigenequation ΣZ,η(1)ΣZ,η(2)⊤u = λΣZ,η(1)ΣZ,η(1)⊤u. Write

J2 = {ΣZ,η(1)ΣZ,η(1)⊤}−1ΣZ,η(1)ΣZ,η(2)⊤.

It holds that vℓ and uℓ are, respectively, the eigenvectors of the d × d matrices J1 
and J2 associated with the same eigenvalue.

3.2.2 Estimation

Let ηt = w⊤vec(Zt) be a linear combination of Zt for some constant vector w ∈ Rd2
. Any w ∈ Rd2 

such that the associated d × d matrix J1 specified in (27) has d distinct eigenvalues is valid for the 
identification of U and V. See Proposition 2 for details. Write Θ = Ip ⊗ {(Q ⊗ P)w} and 
Σ

Y
◦ (k) = (n − k)−1􏽐n

t=k+1 E[{Yt − E(Y̅)} ⊗ vec{Yt−k − E(Y̅)}]. Then ΣZ,η(k) defined as (24) can be 

reformulated as

ΣZ,η(k) = P⊤Θ⊤Σ
Y
◦ (k)Q. (28) 

For 􏽢ΣY,ξ(k) defined as (14), we define the threshold estimators for M1 and M2 given in (21) as fol
lows:

􏽢M1 =
􏽘K

k=1

􏽢Σk
􏽢Σ⊤

k and 􏽢M2 =
􏽘K

k=1

􏽢Σ⊤
k
􏽢Σk, (29) 

where 􏽢Σk is defined as (15). Let λ̂1(􏽢M1) ≥ · · · ≥ λ̂ p(􏽢M1) ≥ 0 be the eigenvalues of the p × p matrix 
􏽢M1. Recall rank(M1) = d. Analogous to (16), we can also estimate d as

d̂ = arg min
j∈[R]

λ̂ j+1(􏽢M1) + cn

λ̂ j(􏽢M1) + cn

, (30) 

where R and cn are same as those in (16). The convergence rate of cn will be specified in Theorem 1
and Remark 7 in Section 4. Theorem 1 shows that d̂ is consistent, i.e., P(d̂ ≠ d)→ 0 as n→∞.
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Remark 5 Analogously, we can also estimate d by replacing 􏽢M1 in (30) by 􏽢M2. Recall 􏽢M1 

and 􏽢M2 are, respectively, p × p and q × q matrices. For K = 1, since the nonzero 

eigenvalues of 􏽢M1 and 􏽢M2 are identical, such replacement will lead to a same 

estimate for d as that by (30). For K > 1, although the estimates based on 􏽢M1 

and 􏽢M2 are both consistent, their finite-sample performance is a little bit differ
ent. More specifically, simulation results show that (a) the estimate based on 
􏽢M1 has higher probability of correctly estimating d when p > q, (b) the estimate 

based on 􏽢M2 has higher probability of correctly estimating d when q > p, and 

(c) the estimates based on 􏽢M1 and 􏽢M2 are almost identical when p = q. See the 
online supplementary material, Tables S1–S3 for details. We suggest to esti
mate d based on 􏽢M1 when p ≥ q, and based on 􏽢M2 when p < q.

Now let 􏽢P be the p × d̂ matrix of which the columns are the d̂ orthonormal eigenvectors of 􏽢M1 

corresponding to its d̂ largest eigenvalues, and 􏽢Q be the q × d̂ matrix of which the columns are the 

d̂ orthonormal eigenvectors of 􏽢M2 corresponding to its d̂ largest eigenvalues. Define

􏽢Zt =􏽢P⊤Yt
􏽢Q and η̂t = w⊤vec(􏽢Zt) (31) 

for some constant vector w ∈ Rd̂2 
with bounded ℓ2-norm. Based on (28), we put

􏽢ΣZ,η(k) =􏽢P⊤􏽢Θ⊤Tδ2 {􏽢ΣY̌(k)}􏽢Q, (32) 

where Tδ2 (·) is a threshold operator with the threshold level δ2 ≥ 0, 􏽢Θ = Ip ⊗ {(􏽢Q ⊗􏽢P)w}, and

􏽢ΣY̌(k) =
1

n − k

􏽘n

t=k+1

(Yt − Y̅) ⊗ vec(Yt−k − Y̅). (33) 

Write 􏽢J1 = {􏽢ΣZ,η(1)⊤􏽢ΣZ,η(1)}−1􏽢ΣZ,η(1)⊤􏽢ΣZ,η(2) and let v̂1, . . . , v̂d̂ be the d̂ eigenvectors of the d̂ × d̂ 

matrix 􏽢J1. Now the estimators for A and B are defined as

􏽢A =􏽢P􏽢U and 􏽢B = 􏽢Q􏽢V, (34) 

where 􏽢U = (û1, . . . , ûd̂) and 􏽢V = (v̂1, . . . , v̂d̂) with

ûℓ =
􏽢ΣZ,η(1)v̂ℓ

|􏽢ΣZ,η(1)v̂ℓ|2
and v̂ℓ =

􏽢ΣZ,η(1)⊤ûℓ

|􏽢ΣZ,η(1)⊤ûℓ|2
. (35) 

In the above expression, (û1, . . . , ûd̂)⊤ is the inverse of 􏽢U.

Remark 6 Our above-presented estimation procedure essentially estimates V−1, U, U−1, 
and V sequentially. Parallel to Remark 2 in Section 3.1, we can also consider 
estimating U−1 first. Remark 4 indicates that the d rows of U−1 are the d eigen
vectors of J2. Since 􏽢J1 and 􏽢J2 = {􏽢ΣZ,η(1)􏽢ΣZ,η(1)⊤}−1􏽢ΣZ,η(1)􏽢ΣZ,η(2)⊤ are full- 
ranked, the difference between these two solutions are negligible, which is 
confirmed by the simulation not reported here.

4 Asymptotic properties
As we do not impose the stationarity on {Yt}, we use the concept of ‘α-mixing’ to characterize the 
serial dependence of {Yt} with the α-mixing coefficients defined as
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α(k) = sup
r

sup
A∈F r

−∞,B∈F∞
r+k

|P(A ∩ B) − P(A)P(B)|, k ≥ 1, (36) 

where F s
r is the σ-field generated by {Yt : r ≤ t ≤ s}. To simplify our presentation, we first present 

the theoretical results for the most challenging scenario with p, q ≫ n in Theorems 1 and 2, and 
then give the associated results in Remark 7 for the cases with fixed (p, q) or (p, q) diverging at 
some polynomial rate of n. We need the following regularity conditions.

Condition 3 (i) There exists a universal constant C1 > 0 such that maxk∈[K] ‖ΣY,ξ(k)‖2 ≤ C1. 
(ii) Write ΣY,ξ(k) = {σ(k)

y,ξ,i,j}p×q. It holds that maxi∈[p]
􏽐q

j=1 |σ
(k)
y,ξ,i,j|

ι ≤ s1 and 

max j∈[q]
􏽐p

i=1 |σ
(k)
y,ξ,i,j|

ι ≤ s2 for some universal constant ι ∈ [0, 1), where 
s1 and s2 may, respectively, diverge together with p and q.

Condition 4 (i) There exist some universal constants C2 > 0, C3 > 0, and r1 ∈ (0, 2] such 
that maxi∈[p] max j∈[q] maxt∈[n] P(|yi,j,t| > x) ≤ C2 exp (−C3xr1 ) and 
maxt∈[n] P(|ξt| > x) ≤ C2 exp (−C3xr1 ) for any x > 0. (ii) There exist some 
universal constants C4 > 0, C5 > 0, and r2 ∈ (0, 1] such that the mixing co
efficients α(k) given in (36) satisfy α(k) ≤ C4 exp (−C5kr2 ) for all k ≥ 1.

Recall ΣY,ξ(k) is a p × q matrix. Condition 3(i) requires the singular values of ΣY,ξ(k) to be uniformly 
bounded away from infinity for any k ∈ [K]. Our technical proofs indeed allow maxk∈[K] ‖ΣY,ξ(k)‖2 

to diverge with n. We impose Condition 3(i) just for simplifying the presentation. Condition 3(ii) im
poses some sparsity on ΣY,ξ(k). Notice that ΣY,ξ(k) = AGkB⊤ for some d × d diagonal matrix Gk. 
Under some sparsity condition on A and B, applying the technique used to derive Lemma 5 of 
Chang et al. (2018), we can show that Condition 3(ii) holds for certain (s1, s2). Condition 4 is a com
mon assumption in the literature on ultrahigh-dimensional data analysis, which ensures exponential- 
type upper bounds for the tail probabilities of the statistics concerned when p, q ≫ n. See Chang et al. 
(2021) and reference therein. The α-mixing assumption in Condition 4(ii) is mild. See the discussion 
below Equation (3) and Assumption 1 in Chang et al. (in press) for the widely used time series models 
which satisfy Condition 4(ii). If we only require maxi∈[p] max j∈[q] maxt∈[n] P(|yi,j,t| > x) = O{x−2(l+τ)} 
for any x > 0, maxt∈[n] P(|ξt| > x) = O{x−2(l+τ)} for any x > 0 and α(k) = O{k−(l−1)(l+τ)/τ} as k→∞ 
with two constants l > 2 and τ > 0, we can apply Fuk–Nagaev-type inequalities to construct the upper 
bounds for the tail probabilities of the statistics concerned for which our procedure still works when p 
and q diverge at some polynomial rate of n. See Remark 7(ii). Let

Π1,n = (s1s2)1/2{n−1log (pq)}(1−ι)/2.

Theorem 1 shows that the ratio-based estimator d̂ defined in (30) is consistent.

Theorem 1 Let Conditions 1–4 hold and the threshold level δ1 = C∗{n−1 log (pq)}1/2 for 
some sufficiently large constant C∗ > 0. For any cn in (30) satisfying 
Π1,n ≪ cn ≪ 1, it holds that P(d̂ = d)→ 1 as n→∞, provided that Π1,n = 
o(1) and log (pq) = o(nc) for some constant c ∈ (0, 1) depending only on r1 

and r2 specified in Condition 4.

To investigate the asymptotic properties of the estimator (􏽢A, 􏽢B) given in (34), we first assume 
d̂ = d. Due to the consistency of d̂ presented in Theorem 1, we can prove, using the same arguments 
below Theorem 2.4 of Chang et al. (2015), that the same results still hold without the assumption 
d̂ = d. See our discussion below Theorem 2.

Proposition 3 Let Conditions 1–4 hold and the threshold level δ1 = C∗{n−1 log (pq)}1/2 for 
some sufficiently large constant C∗ > 0. If d̂ = d, there exist some orthogon

al matrices E1 and E2 such that ‖􏽢PE1 − P‖2 = Op(Π1,n) = ‖􏽢QE2 − Q‖2, 
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provided that Π1,n = o(1) and log (pq) = o(nc) for some constant c ∈ (0, 1) 
depending only on r1 and r2 specified in Condition 4.

Recall the columns of P and Q are, respectively, the d orthonormal eigenvectors corresponding 
to the d nonzero eigenvalues of M1 and M2. The presence of E1 and E2 accounts for the indeter
minacy of those eigenvectors due to reflections and/or possible tied (nonzero) eigenvalues. Let 

w̃ = (E2 ⊗ E1)⊤w, with w ∈ Rd2 
involved in (31) for the definition of η̂t = w⊤vec(􏽢Zt), and define

ΣZ,η̃(k) = P⊤􏽥Θ⊤Σ
Y
◦ (k)Q, 

where 􏽥Θ = Ip ⊗ {(Q ⊗ P)w̃}, and Σ
Y
◦ (k) is specified in (28). As indicated in the online 

supplementary material, Lemma 2, E⊤
1
􏽢ΣZ,η(k)E2 is consistent to ΣZ,η̃(k) under the spectral norm ‖·

‖2 rather than ΣZ,η(k) given in (28). In comparison to ΣZ,η(k), we replace w by w̃ in defining 
ΣZ,η̃(k). As we discussed in the beginning of Section 3.2.2, the selection of w for the identification 
of U and V is not unique. Define

􏽥S1 = ΣZ,η̃(1)⊤ΣZ,η̃(1), 􏽥S2 = ΣZ,η̃(1)⊤ΣZ,η̃(2),

􏽥S∗1 = ΣZ,η̃(1)ΣZ,η̃(1)⊤, 􏽥S∗2 = ΣZ,η̃(1)ΣZ,η̃(2)⊤.

Let μ̃ℓ = c̃2,ℓc̃−1
1,ℓ with c̃k,ℓ = (n − k)−1􏽐n

t=k+1 w̃⊤E[vec{Zt−k − E(Z̅)}{xt,ℓ − E(x̅·,ℓ)}]. Under Condition 
5, parallel to Proposition 2 in Section 3.2, we have that the columns of U = (u1, . . . , ud) and V = 
(v1, . . . , vd) can be also defined, respectively, as

uℓ =
ΣZ,η̃(1)vℓ

|ΣZ,η̃(1)vℓ|2
and vℓ =

ΣZ,η̃(1)⊤uℓ

|ΣZ,η̃(1)⊤uℓ|2
, 

with vℓ and uℓ being, respectively, the eigenvectors of the generalized eigenequations

􏽥S2δ = μ̃ℓ􏽥S1δ and 􏽥S∗2δ = μ̃ℓ􏽥S
∗
1δ. (37) 

The following conditions are needed in our theoretical analysis.

Condition 5 (i) All the values μ̃1, . . . , μ̃d are finite and distinct. (ii) The eigenvalues of 􏽥S1 

are uniformly bounded away from zero.

Condition 6 (i) There exists a universal constant C6 > 0 such that maxk∈{1,2} ‖ΣY
◦ (k)‖2 ≤ C6. 

(ii) Write Σ
Y
◦ (k) = {σ(k)

y
◦

,r,s
}(p2q)×q. It holds that maxr∈[p2q]

􏽐q
s=1 |σ

(k)

y
◦

,r,s
|ι ≤ s3 and 

maxs∈[q]
􏽐p2q

r=1 |σ
(k)

y
◦

,r,s
|ι ≤ s4 for some universal constant ι specified in 

Condition 3(ii), where s3 and s4 may, respectively, diverge together with 
p and q.

Under Condition 5, vℓ and uℓ can be uniquely identified by the generalized eigenequations (37) 
upto the scaling and permutation indeterminacy. Recall Σ

Y
◦ (k) is a (p2q) × q matrix. Condition 6(i) 

requires the largest singular value of Σ
Y
◦ (k) is uniformly bounded away from infinity. Our technical 

proofs indeed allow maxk∈{1,2} ‖ΣY
◦ (k)‖2 to diverge with n. We impose Condition 6(i) just for sim

plifying the presentation. Condition 6(ii) imposes some sparsity requirement on Σ
Y
◦ (k). Same as 

our discussion above for the validity of Condition 3(ii) imposed on the sparsity of ΣY,ξ(k), 
Condition 6(ii) holds automatically for certain (s3, s4) under some sparsity condition imposed 
on the loading matrices A and B.
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Let βv,ℓ and βu,ℓ be the eigenvectors with unit ℓ2-norm of the generalized eigenequations (37) 

associated with μ̃ℓ, i.e., 􏽥S2βv,ℓ = μ̃ℓ􏽥S1βv,ℓ and 􏽥S∗2βu,ℓ = μ̃ℓ􏽥S
∗
1βu,ℓ. By Condition 5(ii), we know 􏽥S1 

and 􏽥S∗1 are two invertible symmetric matrices. Hence, βv,ℓ and βu,ℓ are, respectively, also the eigen

vectors of the eigenequations 􏽥S−1
1
􏽥S2δ = μ̃ℓδ and (􏽥S∗1)−1􏽥S∗2δ = μ̃ℓδ. For given βv,ℓ and βu,ℓ, there exist 

two d × (d − 1) matrices Rv,ℓ and Ru,ℓ such that (βv,ℓ, Rv,ℓ) and (βu,ℓ, Ru,ℓ) are two orthogonal ma
trices. For any ℓ ∈ [d], define

θℓ = σmin(R⊤
v,ℓ
􏽥S−1

1
􏽥S2Rv,ℓ − μ̃ℓId−1) and θ∗ℓ = σmin{R⊤

u,ℓ(􏽥S
∗
1)−1􏽥S∗2Ru,ℓ − μ̃ℓId−1}, (38) 

the smallest singular values of R⊤
v,ℓ
􏽥S−1

1
􏽥S2Rv,ℓ − μ̃ℓId−1 and R⊤

u,ℓ(􏽥S
∗
1)−1􏽥S∗2Ru,ℓ − μ̃ℓId−1, respectively. 

Under Condition 5(i), we know minℓ∈[d] θℓ > 0 and minℓ∈[d] θ∗ℓ > 0. Such defined θℓ and θ∗ℓ can 
be viewed as the extension of the concept ‘eigen-gap’ in symmetric matrices to non-symmetric ma

trices. If 􏽥S−1
1
􏽥S2 is a symmetric matrix, such defined θℓ is actually the eigen-gap min j : j≠ℓ |μ̃j − μ̃ℓ|. 

Write 􏽢A = (â1, . . . , âd̂) and 􏽢B = (b̂1, . . . , b̂d̂). Define

Π2,n = (s3s4)1/2{n−1log (pq)}(1−ι)/2.

Theorem 2 indicates that the columns of 􏽢A and 􏽢B defined in (34) are, respectively, consistent to 
those of A and B upto the reflection and permutation indeterminacy.

Theorem 2 Let Conditions 1–6 hold and the threshold levels δ1 = C∗{n−1 log (pq)}1/2 and 
δ2 = C∗∗{n−1 log (pq)}1/2 for some sufficiently large constants C∗ > 0 and 
C∗∗ > 0. If d̂ = d, there exists a permutation of (1, . . . , d), denoted by 
(j1, . . . , jd), such that |κ1,ℓâ jℓ − aℓ|2 = (1 + θ−1

ℓ ) ·Op(Π1,n + Π2,n) and 

|κ2,ℓb̂ jℓ − bℓ|2 = {1 + (θ∗ℓ)
−1} ·Op(Π1,n + Π2,n) for any ℓ ∈ [d] with some 

κ1,ℓ, κ2,ℓ ∈ {−1, 1}, provided that (Π1,n + 
Π2,n) max {1, d1/2θ−1

ℓ , d1/2(θ∗ℓ)
−1,d1/2θ−2

ℓ , d1/2(θ∗ℓ)
−2} = o(1) and log (pq) = 

o(nc) for some constant c ∈ (0, 1) depending only on r1 and r2 specified in 
Condition 4. Furthermore, it also holds that 1 − |âH

jℓaℓ|
2 = (1 + θ−1

ℓ )2 ·

Op(Π2
1,n + Π2

2,n) and 1 − |b̂H

jℓbℓ|
2 = {1 + (θ∗ℓ)

−1}2 ·Op(Π2
1,n + Π2

2,n) for any 

ℓ ∈ [d]. Here, the terms Op(Π1,n + Π2,n) and Op(Π2
1,n + Π2

2,n) hold uniformly 
over ℓ ∈ [d].

For (j1, . . . , jd) specified in Theorem 2, Proposition 1 in Section 3.1 shows that â jℓ and b̂ jℓ may 
not be real vectors for some ℓ ∈ [d] although aℓ and bℓ are real vectors for all ℓ ∈ [d]. When d̂ = d, 

we can measure the difference between A = (a1, . . . , ad) and 􏽢A = (â1, . . . , âd) by maxℓ∈[d] (1 − 
|âH

jℓaℓ|
2) with (j1, . . . , jd) specified in Theorem 2. In finite samples, d̂ may not be exactly equal 

to d. In general scenario without assuming d̂ = d, we consider to measure the difference between 

A = (a1, . . . , ad) and 􏽢A = (â1, . . . , âd̂) by

ρ2(A, 􏽢A) = max
ℓ∈[d]

min
j∈[d̂]

(1 − |âH
j aℓ|

2). (39) 

Analogously, we can measure the difference between B = (b1, . . . , bd) and 􏽢B = (b̂1, . . . , b̂d̂) by

ρ2(B, 􏽢B) = max
ℓ∈[d]

min
j∈[d̂]

(1 − |b̂H

j bℓ|
2). (40) 

When d̂ = d, Theorem 2 yields that ρ2(A, 􏽢A) = {1 + (minℓ∈[d] θℓ)−1}2 ·Op(Π2
1,n + Π2

2,n) and 
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ρ2(B, 􏽢B) = {1 + (minℓ∈[d] θ∗ℓ)
−1}2 ·Op(Π2

1,n + Π2
2,n). Write φn = {1 + (minℓ∈[d] θℓ)−1}2(Π2

1,n + Π2
2,n). 

For any ε > 0, there exists some constant Cε > 0 such that P{ρ2(A, 􏽢A) > Cεφn | d̂ = d} ≤ ε. 
Together with Theorem 1, we have 

P{ρ2(A, 􏽢A) > Cεφn} ≤ P{ρ2(A, 􏽢A) > Cεφn | d̂ = d}P(d̂ = d) + P(d̂ ≠ d) ≤ ε + o(1)→ ε, which im

plies {1 + (minℓ∈[d] θℓ)−1}2(Π2
1,n + Π2

2,n), the convergence rate of ρ2(A, 􏽢A) conditional on d̂ = d, is 

also the convergence rate of ρ2(A, 􏽢A). Identically, we also know {1 + (minℓ∈[d] θ∗ℓ)
−1}2(Π2

1,n + 
Π2

2,n) is the convergence rate of ρ2(B, 􏽢B).

Remark 7 (i) If p and q are fixed constants, we can select the threshold levels δ1 = δ2 = 0 
in (29) and (32). In this scenario, Conditions 3 and 6 hold automatically with 
ι = 0 and (s1, s2, s3, s4) being some fixed constants, and Condition 4 can be re
placed by the weaker requirements that 
maxi∈[p] max j∈[q] maxt∈[n] E(|yi,j,t|

2ν) = O(1), maxt∈[n] E(|ξt|
2ν) = O(1), and 

􏽐∞
k=1 {α(k)}1−2/ν = O(1) for some constant ν > 2. Under these conditions, using 

the Davydov inequality, we have Theorem 1, Proposition 3, and Theorem 2
hold with Π∗1,n = Π∗2,n = n−1/2 and Π∗1,n ≪ cn ≪ 1, provided that 

(Π∗1,n + Π∗2,n) max {1, θ−2
ℓ , (θ∗ℓ)

−2} = o(1).

(ii) If p and q diverge at some polynomial rate of n, we can replace Condition 4 by the weaker 
requirements maxi∈[p] max j∈[q] maxt∈[n] P(|yi,j,t| > x) = O{x−2(l+τ)} for any x > 0, maxt∈[n] P(|ξt| > 
x) = O{x−2(l+τ)} for any x > 0, and α(k) = O{k−(l−1)(l+τ)/τ} as k→∞ with some constants l > 2 
and τ > 0. Under these conditions, if the threshold levels δ1 = C∗(pq)1/ln−1/2 and δ2 = 
C∗∗(pq)2/ln−1/2 in (29) and (32) for some sufficiently large constants C∗ > 0 and C∗∗ > 0, 
Theorem 1, Proposition 3, and Theorem 2 hold with Π∗1,n = (s1s2)1/2{(pq)1/ln−1/2}1−ι, Π∗2,n = 
(s3s4)1/2{(pq)2/ln−1/2}1−ι and Π∗1,n ≪ cn ≪ 1, provided that 
(Π∗1,n + Π∗2,n) max {1, d1/2θ−1

ℓ , d1/2(θ∗ℓ)
−1, d1/2θ−2

ℓ , d1/2(θ∗ℓ)
−2} = o(1).

5 Numerical studies
5.1 Simulation
We illustrate the finite-sample performance of the proposed methods by simulation based on mod
el (2). Let A∗ ≡ (a∗i,ℓ) p×d = (a∗1, . . . , a∗d) and B∗ ≡ (b∗j,ℓ)q×d = (b∗1, . . . , b∗d) with the elements drawn 
from the uniform distribution on [−3, 3] independently satisfying the restriction 
rank(A∗) = d = rank(B∗). Write x̃ℓ = (x̃1,ℓ, . . . , x̃n,ℓ)

⊤ and let x̃1, . . . , x̃d be independent AR(1) 
processes with independent N (0, 1) innovations, and the autoregressive coefficients drawn 
from the uniform distribution on [−0.95, −0.6] ∪ [0.6, 0.95]. The elements of the error term E 

in (2) are drawn from N (0, 1) independently. Then, we generate the tensor 
Y =

􏽐d
ℓ=1 a∗ℓ ◦ b∗ℓ ◦ x̃ℓ + E. Let A = (a1, . . . , ad) and B = (b1, . . . , bd) with aℓ = a∗ℓ/|a

∗
ℓ |2 and 

bℓ = b∗ℓ/|b
∗
ℓ |2. Equivalently, we have Y =

􏽐d
ℓ=1 aℓ ◦ bℓ ◦ xℓ + E, where xℓ = |a∗ℓ |2|b

∗
ℓ |2x̃ℓ. We set 

d ∈ {1, 3, 6}, n ∈ {300, 600, 900}, and p, q taking values between 4 and 256. We consider the fol
lowing two choices for ξt: 

• (PCA) Let Y = {vec(Y1), . . . , vec(Yn)}⊤. Perform the principal component analysis for Y using 
the R-function prcomp in the R-package stats, and select ξt as the average of the first m 
principal components corresponding to the eigenvalues which count for at least 99% of the 
total variations.

• (Random weighting) Generate a (pq)-dimensional vector h with its components randomly 
from the uniform distribution on [0, 1], and normalize h as a unit vector, which is denoted 
by h0. Then define ξt = h⊤

0vec(Yt).

For the refined method, η̂t is specified in the same manners with Yt replaced by 􏽢Zt. We only pre
sent the results for the cases with p ≥ q. More simulation results with p < q can be found in the 
online supplementary material.
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We first consider the finite-sample performance of the estimation for d by (16) of the direct es
timation and by (30) of the refined method. We set δ1 = 0 and cn = 0 in (16) and (30). Table 1 re
ports the relative frequency estimates of P(d̂ = d) based on 2000 repetitions with ξt determined by 
PCA. When d = 1, we observe d̂ ≡ d for both the direct and refined methods in all the simulation 
replications. For d > 1, the relative frequency estimates of P(d̂ = d) based on both the direct and 
refined methods increase as n, p, and q grow in most of the cases. The refined method works uni
formly better than the direct method except (p, q, d, n) = (8, 8, 3, 600), (8, 8, 3, 900), and 
(16, 16, 3, 900), and their performances in these three cases are similar. As d increases, the im
provement from using the refined method also increases. Also, the refined method with larger K 
has better performance in most of the cases. As shown in the proof of Theorem 1 in the online 

supplementary material, the consistency of d̂ depends on the convergence rate of ‖􏽢M1 − M1‖2. 

Recall 􏽢M1 =
􏽐K

k=1 Tδ1 {􏽢ΣY,ξ(k)}Tδ1 {􏽢ΣY,ξ(k)⊤} and M1 =
􏽐K

k=1 ΣY,ξ(k)ΣY,ξ(k)⊤. The proof of 

Lemma 1 in the online supplementary material indicates that the convergence rate of |􏽢ΣY,ξ(k) − 
ΣY,ξ(k)|∞ plays a key role in deriving the convergence rate of ‖􏽢M1 − M1‖2. If K is a fixed constant, 

maxk∈[K] |􏽢ΣY,ξ(k) − ΣY,ξ(k)|∞ = Op[{n−1 log (pq)}1/2]. If K diverges with n, K will appear in the 

convergence rate of maxk∈[K] |􏽢ΣY,ξ(k) − ΣY,ξ(k)|∞. Then the convergence rate of ‖􏽢M1 − M1‖2 

with diverging K will be slower than that with fixed K. Hence, we cannot select K as large as pos
sible since too large K may lead to a bad estimate d̂. We suggest to restrict K ≤ 10 in practice. In the 
online supplementary material, Table S4 reports the results using randomly weighted ξt; showing 
the similar patterns as those in Table 1. Note that using PCA-based ξt produces uniformly more 
accurate estimates than using randomly weighted ξt.

Tables S5–S7 in the online supplementary material present the averages and standard deviations 

of the estimation errors ρ2(A, 􏽢A) and ρ2(B, 􏽢B) defined in (39) and (40) based on 2,000 repetitions. 
To highlight the key information, Figure 1 plots the results of the direct method and the refined 
method with K = 3. It shows that (a) the refined method outperforms the direct method uniformly 
when d > 1, (b) two methods perform about the same in some cases when d = 1, and (c) the 
PCA-based ξt performs better than the randomly weighted ξt. Figure 2 summarizes the perform
ance of the refined method with K ∈ {3, 5, 7} and ξt determined by the PCA method. We can find 
that (a) the refined method performs about the same for K ∈ {3, 5, 7} when d = 1 and (b) the re
fined method with larger K in general has slightly better performance when d > 1, mainly because 
larger K is more likely to lead to more accurate estimate of d, see Table 1.

5.2 A real data analysis
In this section, we analyse the monthly average value weighted returns of the 100 portfolios from 
January 1990 to December 2017. The portfolios include all NYSE, AMEX, and NASDAQ stocks, 
which are constructed by the intersections of 10 levels of size (market equity) and 10 levels of the 
book equity to market equity ratio (BE). The data were downloaded from http://mba.tuck. 
dartmouth.edu/pages/faculty/ken.french/data_library.html. Although this website provides 
monthly return data from July 1926 to June 2021, there are many missing values in the early years. 
We restrict the time period from January 1990 to December 2017 to avoid the large numbers of 
missing data and large fluctuations. The data can be represented as a 10 × 10 matrix Yt = (yi,j,t) for 
t = 1, . . . , 336 (i.e., p = q = 10, n = 336), where yi,j,t is the return of the portfolio at the ith level of 
size and jth level of the BE-ratio at time t. We impute the missing values by the weighted averages of 
the three previous months, i.e., set yi,j,t = 0.5yi,j,t−1 + 0.3yi,j,t−2 + 0.2yi,j,t−3 for missing yi,j,t.

We standardize each of the 100 component time series {yi,j,t}
n
t=1 so that they have mean zero and 

unit variance. To economize the notation, we still use yi,j,t to denote the standardized data. Figure 3
shows the plots of the standardized return series {yi,j,t}

n
t=1, for i, j = 1, . . . , 10. The rows in Figure 3

correspond to the 10 levels of size and the columns correspond to the 10 levels of the BE-ratio. 
Notice that the ranges of the vertical values are not the same, and the figures are not directly com
parable. All the 100 return series appear to be stationary. The ACF (autocorrelation functions) 
plots of these 100 time series indicate that most series have significant ACF at the first lag, and 
all series do not show any seasonal patterns. The cross correlations between different time series 
are mostly significant at time lags 0 and 1.
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We apply our model (4) to fit the standardized matrix time series {Yt}
336
t=1 using the refined esti

mation method with PCA-based ξt; leading to d̂ ≡ 1 with K = 3, 5, or 7. See (30). In the sequel, we 
only present the results with K = 5. The results based on K ∈ {3, 7} are similar and thus omitted 
here. Based on (34), we obtain 􏽢A = (0.44, 0.34, 0.32, 0.32, 0.29, 0.25, 0.30, 0.30, 0.33, 0.23)⊤ 

Figure 1. The lineplots for the averages of ρ2(A, 􏽢A) and ρ2(B, 􏽢B) based on 2,000 repetitions. The legend is defined as 
follows: (i) the direct method with PCA-based ξt (− · −x25A0 − ·−); (ii) the direct method with randomly weighted ξt 
(− · −▲ − ·−); (iii) the refined method (K = 3) with PCA-based ξt (—†—); and (iv) the refined method (K = 3) with 
randomly weighted ξt (—◆—).
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and 􏽢B = (0.20, 0.26, 0.27, 0.29, 0.35, 0.33, 0.34, 0.31, 0.37, 0.39)⊤. Following the arguments 
above Proposition 1 in Section 3.1, we can recover the latent time series {x̂t,1}336

t=1 . Figure 4 displays 
the plots of time series {x̂t,1}336

t=1 and its ACF, which shows that the autocorrelations of {x̂t,1}336
t=1 is 

significant at the first lag that is consistent to the ACF patterns of Yt. The Akaike information cri
terion (AIC) suggests to fit {x̂t,1}336

t=1 by an AR(1) model. Hence, to model this 10 × 10 matrix time 

Figure 2. The lineplots for the averages of ρ2(A, 􏽢A) and ρ2(B, 􏽢B) based on 2,000 repetitions, where (􏽢A, 􏽢B) is 
estimated by the refined method (K = 3, 5, 7) with PCA-based ξt . The legend is defined as follows: (i) K = 3 (—†—); 
(ii) K = 5 (—+—); and (iii) K = 7 (—⊠—).
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series Yt, our method essentially only needs to estimate one parameter in an AR(1) model. We also 
consider to fit the matrix time series Yt by the following methods: 

• (UniARMA) For each of 100 component time series {yi,j,t}
336
t=1 , we fit an ARMA model specified 

by the AIC; leading to the estimation for 135 coefficient parameters in the total 100 models.

Table 1. Relative frequency estimates of P(d̂ = d) based on 2,000 repetitions with PCA-based ξt , where the direct 
estimate and the refined estimate are given in (16) and (30), respectively

Refined Direct Refined Direct

(p, q) n K = 3 K = 5 K = 7 (p, q) n K = 3 K = 5 K = 7

d = 1 (4, 4) 300 100.00 100.00 100.00 100.00 (32, 4) 300 100.00 100.00 100.00 100.00

600 100.00 100.00 100.00 100.00 600 100.00 100.00 100.00 100.00

900 100.00 100.00 100.00 100.00 900 100.00 100.00 100.00 100.00

(8, 8) 300 100.00 100.00 100.00 100.00 (64, 4) 300 100.00 100.00 100.00 100.00

600 100.00 100.00 100.00 100.00 600 100.00 100.00 100.00 100.00

900 100.00 100.00 100.00 100.00 900 100.00 100.00 100.00 100.00

(16, 16) 300 100.00 100.00 100.00 100.00 (128, 4) 300 100.00 100.00 100.00 100.00

600 100.00 100.00 100.00 100.00 600 100.00 100.00 100.00 100.00

900 100.00 100.00 100.00 100.00 900 100.00 100.00 100.00 100.00

(32, 32) 300 100.00 100.00 100.00 100.00 (256, 4) 300 100.00 100.00 100.00 100.00

600 100.00 100.00 100.00 100.00 600 100.00 100.00 100.00 100.00

900 100.00 100.00 100.00 100.00 900 100.00 100.00 100.00 100.00

d = 3 (8, 8) 300 78.85 79.85 80.35 78.75 (32, 8) 300 88.65 90.20 91.55 85.65

600 82.45 82.15 81.65 83.75 600 92.95 93.65 94.50 92.05

900 85.55 85.05 84.50 86.55 900 94.45 95.25 96.00 93.20

(16, 16) 300 89.45 90.95 92.10 88.00 (64, 8) 300 89.85 92.45 93.70 87.70

600 93.85 94.35 95.05 92.35 600 93.55 94.60 95.75 92.75

900 94.95 94.75 95.10 94.80 900 95.65 96.05 96.50 94.40

(32, 32) 300 94.30 96.25 96.45 91.25 (128, 8) 300 91.40 93.55 94.90 88.85

600 96.20 96.95 97.60 94.90 600 95.05 95.65 96.55 93.60

900 97.20 97.80 98.35 96.20 900 96.45 97.05 97.35 95.95

(64, 64) 300 95.80 96.95 97.80 92.10 (256, 8) 300 91.90 94.00 95.05 88.85

600 96.95 98.25 98.90 95.15 600 94.65 96.30 96.65 93.50

900 98.15 98.90 99.10 97.40 900 97.25 98.00 98.10 96.40

d = 6 (12, 12) 300 73.35 78.15 81.80 60.70 (32, 12) 300 85.25 90.85 94.55 66.45

600 77.85 81.50 84.85 68.00 600 89.55 93.75 95.00 76.70

900 80.15 82.90 85.10 73.05 900 90.65 93.50 95.75 81.20

(16, 16) 300 81.50 87.00 89.05 66.30 (64, 12) 300 88.35 93.55 95.50 69.25

600 85.35 89.60 91.40 74.55 600 92.00 95.70 97.00 80.25

900 88.45 90.90 93.20 79.40 900 93.75 96.50 97.70 85.95

(32, 32) 300 90.65 94.90 96.40 76.65 (128, 12) 300 90.80 95.10 96.80 72.05

600 92.50 96.40 97.80 81.50 600 94.05 96.45 97.60 83.30

900 93.40 96.00 97.55 85.40 900 94.60 96.85 98.40 85.65

(64, 64) 300 94.30 98.35 99.20 79.30 (256, 12) 300 90.85 95.40 97.65 71.95

600 96.15 98.20 99.10 85.70 600 93.90 97.40 98.25 81.95

900 96.30 98.35 99.10 89.15 900 93.85 97.35 98.75 84.50
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• (SVAR) Fit a sparse VAR(ℓ) model to {vec(Yt)}
336
t=1 using the R-function sparseVAR in the 

R-package bigtime with the standard lasso penalization and the optimal sparsity parameter 
selected by the time series cross validation procedure. The programme selects ℓ = 27 automat
ically based on the time series length, and there are 270,000 parameters to be estimated.

• (MAR) Fit {Yt}
336
t=1 by the matrix-AR(1) of Chen et al. (2021), which involves 200 parameters.

• (TS-PCA) Apply the principle component analysis for time series suggested in Chang et al. 
(2018) to the 100-dimensional time series {vec(Yt)}

336
t=1 using the R-package HDTSA, leading 

to 98 univariate time series and one two-dimensional time series. For the obtained univariate 
time series, we fit it by an ARMA model with the order determined by the AIC. For the ob
tained two-dimensional time series, we fit it by an VAR model with the order determined 
by the AIC. There are in total 93 parameters in the models.

• (FAC) Apply the factor model of Wang et al. (2019) to matrix time series {Yt}
336
t=1 with the pre- 

determined parameter h0 = 1 as suggested in the real data analysis part of their paper. Based 
on their method, we find there is only one factor. We fit the latent factor series by an AR(1) 
model specified by the AIC which only needs to estimate one parameter.

Figure 3. The plots of the return series of the portfolios formed on different levels of size (by rows) and book equity 
to market equity ratio (by columns). The horizontal axis represents time and the vertical axis represents the monthly 
returns. The ranges of the vertical values are not the same.

Figure 4. The plots of the latent time series {x̂t,1}336
t=1 and its autocorrelation functions.

D
ow

nloaded from
 https://academ

ic.oup.com
/jrsssb/article/85/1/127/7008470 by N

ational Science & Technology Library user on 04 M
arch 2023



146                                                                                                                                                 Chang et al.

While UniARMA, SVAR and MAR model Yt or vec(Yt) directly, our proposed method, TS-PCA 
and FAC seek dimension reduction first and then model the resulting low-dimensional time series. 
Both RMSE and MAE, defined as below, of the fitted models are listed in Table 2:

RMSE =
1

33,600

􏽘336

t=1

􏽘10

i=1

􏽘10

j=1

(ŷi,j,t − yi,j,t)
2

􏼨 􏼩1/2

, MAE =
1

33,600

􏽘336

t=1

􏽘10

i=1

􏽘10

j=1

|ŷi,j,t − yi,j,t|.

Among the three dimension-reduction methods, our proposed method has the smallest RMSE and 
MAE, while MAR achieves the overall minimum RMSE and MAE.

We also evaluate the post-sample forecasting performance of these methods by performing the 
one-step and two-step ahead rolling forecasts for the 24 monthly readings in the last 2 years (i.e., 
2016 and 2017). For each s = 1, . . . , 24, we use our proposed method and the other five methods 
to fit {Yt}

311+s
t=s and then obtain the one-step forecast of Y312+s denoted by 􏽢Y312+s = {ŷ(s)

i,j,312+s}10×10. 
For the two-step ahead forecast, we fit {Yt}

310+s
t=s by the six methods, and the two-step ahead fore

cast 􏽢Y312+s can be obtained by plugging-in the one-step forecast into the models. For our proposed 
method, TS-PCA and FAC, if the dimension of the obtained latent time series is larger than 1 we fit 
it by a VAR model with the order determined by the AIC, otherwise, we fit it by an ARMA model 
with the order determined by the AIC. The post-sample forecasting performance is evaluated by 
the rRMSE and rMAE defined as

rRMSE =
1

2,400

􏽘24

s=1

􏽘10

i=1

􏽘10

j=1

{ŷ(s)
i,j,312+s − yi,j,312+s}

2

􏼢 􏼣1/2

,

rMAE =
1

2,400

􏽘24

s=1

􏽘10

i=1

􏽘10

j=1

|ŷ(s)
i,j,312+s − yi,j,312+s|.

Table 3 summarizes the post-sample forecasting rRMSE and rMAE. The newly proposed method, 
in spite of its simplicity, exhibits the promising post-sample forecasting performance, as its rRMSE 

Table 2. Fitting errors for the monthly data from year 1990 to 2017. The computational time is conducted on the 
Windows platform with Intel(R) Core(TM) i7-8550U CPU at 1.99 GHz

Proposed TS-PCA FAC UniARMA SVAR MAR

RMSE 0.9913 0.9935 0.9923 0.9895 0.9985 0.9613

MAE 0.7432 0.7456 0.7436 0.7417 0.7444 0.7235

#Parameters 1 93 1 135 270000 200

time (s) 0.3172 6.4618 0.6596 6.7335 1689.1860 1.8470

Table 3. One-step and two-step ahead forecasting errors for the monthly readings in the last 2 years 2016 and 2017

Proposed TS-PCA FAC UniARMA SVAR MAR

One-step forecast

rRMSE 0.7678 0.7802 0.7701 0.7724 0.7690 0.8067

rMAE 0.5609 0.5696 0.5649 0.5652 0.5614 0.5948

Two-step forecast

rRMSE 0.7668 0.7526 0.7683 0.7707 0.7693 0.7728

rMAE 0.5590 0.5512 0.5610 0.5638 0.5616 0.5627
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and rMAE are the smallest in one-step ahead forecasting among all the methods concerned, and 
are the second smallest in the two-step ahead forecast for which only TS-PCA has smaller 
rRMSE and rMAE.
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