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A standing challenge in data privacy is the trade-off between the level

of privacy and the efficiency of statistical inference. Here we conduct an

in-depth study of this trade-off for parameter estimation in the β-model

(Chatterjee, Diaconis and Sly, 2011) for edge differentially private network

data released via jittering (Karwa, Krivitsky and Slavković, 2017). Unlike

most previous approaches based on maximum likelihood estimation for this

network model, we proceed via method-of-moments. This choice facilitates

our exploration of a substantially broader range of privacy levels – corre-

sponding to stricter privacy – than has been to date. Over this new range we

discover our proposed estimator for the parameters exhibits an interesting

phase transition, with both its convergence rate and asymptotic variance fol-

lowing one of three different regimes of behavior depending on the level of

privacy. Because identification of the operable regime is difficult if not impos-

sible in practice, we devise a novel adaptive bootstrap procedure to construct

uniform inference across different phases. In fact, leveraging this bootstrap

we are able to provide for simultaneous inference of all parameters in the β-

model (i.e., equal to the number of nodes), which, to our best knowledge, is

the first result of its kind. Numerical experiments confirm the competitive and

reliable finite sample performance of the proposed inference methods, next to

a comparable maximum likelihood method, as well as significant advantages

in terms of computational speed and memory.

1. Introduction. In this information age, data is one of the most important assets. With

ever-advancing machine learning technology, collecting, sharing and using data yield great

societal and economic benefits, while the abundance and granularity of personal data bring

new risks of potential exposure of sensitive personal or financial information which may

lead to adverse consequences. Therefore, continuous and conscientious effort has been made

to formulate concepts of sensitivity of the data and privacy guarantee in data usage, and

those concepts evolve along with the technological advancement. At present, one of most

commonly used formulations of data privacy is the so-called differential privacy (Dwork,

2006; Wasserman and Zhou, 2010). This paper is devoted to studying statistical estimation

in the context of edge differential privacy for network data.

In network data, individuals (e.g., persons or firms) are typically represented by nodes

and their inter-relationships are represented by edges. Therefore, network data often contain
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sensitive individual information. On the other hand, for analysis purposes the information

of interest in the data should be sufficiently preserved. Hence, the primary concern for data

privacy is two-folded: (a) to release only a sanitized version of the original network data to

protect privacy, and (b) the sanitized data should preserve the information of interest such

that analysis based on the sanitized data is still effective.

To protect privacy, the conventional approach is to release some noised version of sum-

mary statistics of interest. Normally the summary statistics used are of (much) lower dimen-

sion than the original data. In the context of network data, the chosen summary statistics can

be the node degree sequence (Karwa and Slavković, 2016) or subgraph counts (Blocki et al.,

2013). To achieve differential privacy, only a noised version of the summary statistics is

released. The noised version of the statistics is generated based on some appropriate re-

lease mechanism, which depends critically on the so-called sensitivity of the adopted statis-

tics. One of the most frequently used data release schemes is the Laplace mechanism of

Dwork et al. (2006). See also Section 2 of Wasserman and Zhou (2010), and Section 3 of

Karwa and Slavković (2016). Karwa and Slavković (2016) consider edge differential privacy

for the β-model (Chatterjee, Diaconis and Sly, 2011), where only the node degree sequence,

which is a sufficient statistic, is released with added noise generated from a discrete Laplace

mechanism. However, a noisy degree sequence may no longer be a legitimate degree se-

quence. Even for a legitimate degree sequence, the maximum likelihood estimator (MLE)

may not exist. Karwa and Slavković (2016) propose a two-step procedure that entails ‘de-

noising’ the noisy sequence first and then estimating the parameters using the de-noised data

by MLE.

A radically different approach is to release a noisy version of an entire network.

Karwa, Krivitsky and Slavković (2017) offer what they call a generalized random response

mechanism for doing so and present empirical results of its use with maximum likelihood

estimation in exponential random graph models. The structure of this release mechanism is

same as the noisy network setting of Chang, Kolaczyk and Yao (2022), where the edge status

of each pair of nodes is known only up to some binary noise and method-of-moments was

used to estimate certain network summary statistics. As noted by Chang, Kolaczyk and Yao

(2020), this noisy network setting in turn is essentially analogous to the idea of jittering in

the analysis of classical Euclidean data, where each original data point is released with added

noise. In this paper we study this jittering release mechanism for network data, and we do

so in the specific context of parameter estimation for the β-model. However, importantly, we

note that unlike approaches based on releasing noised versions of specific, pre-determined

summary statistics, jittering allows for the possibility of multiple statistics to be calculated

and/or quantities to be estimated from the same released network.

Specifically, we conduct an in-depth study on the statistical inference for the β-model

based on the edge π-differentially private data generated via jittering, where π > 0 reflects the

privacy level; the smaller π, the greater the level of privacy. Unlike most previous approaches

to inference under this model, based on maximum likelihood estimation, we proceed via

method of moments. This choice facilitates our exploration of a substantially broader range

of privacy levels π than has been to date. Let p be the number of nodes in the network. Our

major contributions are as follows.

• First, we develop the asymptotic theory when p→∞ and π→ 0, and find that (i) in order

to achieve consistency of the newly proposed moment-based estimator, π should decay to

zero slower than p−1/3 log1/6 p, while (ii) both the convergence rate and the asymptotic

variance of our proposed estimator depend intimately on the interplay between p and π. In

particular, the asymptotic behavior of these quantities exhibits an interesting phase transi-

tion phenomenon, as π decays to zero as a function of p, following one of three different

regimes of behavior: π≫ p−1/4, π ≍ p−1/4, and p−1/4≫ π≫ p−1/3 log1/6 p.
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• Second, because identification of the operable regime is difficult if not impossible in prac-

tice, we devise a novel adaptive bootstrap procedure to construct uniform inference across

different phases.

• Third, leveraging this bootstrap we are able to provide for simultaneous inference of all

parameters in the β-model (i.e., equal to the number of nodes). This, to our best knowledge,

is the first result of its kind, which requires a substantially different and more nuanced

technical investigation than those for finite-dimensional results.

• Lastly, numerical experiments confirm the competitive and reliable finite sample perfor-

mance of the proposed inference methods, next to a comparable maximum likelihood

method, as well as significant advantages in terms of computational speed and memory.

The dichotomy of ‘dense’ versus ‘sparse’ networks is an important one in network

science, as sparsity of edges is a property encountered widely in practice with real-

world networks. In recent years, theoretical properties of sparse β-models have been suc-

cessfully considered, extending the original developments for dense β-models (such as

cited above). See, for example, Mukherjee, Mukherjee and Sen (2018), Chen, Kato and Leng

(2021), Stein and Leng (2021), and Zhang et al. (2021), which in turn build on earlier work

of Rinaldo, Petrović and Fienberg (2013). Fan, Zhang and Yan (2020) have addressed esti-

mation in an edge-weighted version of the sparse β-model (as well as in the dense case)

under the differential privacy mechanism of Karwa and Slavković (2016). Here in this paper

we conduct the majority of our development in the dense case, after which we then extend

our results to the sparse case.

The rest of the paper is organized as follows. Section 2 introduces the concept of

edge π-differential privacy for networks, and the data release mechanism by jittering

(Karwa, Krivitsky and Slavković, 2017). Section 3 addresses inference for the β-model based

on edge differentially private data, introducing the method-of-moments estimator and char-

acterizing its asymptotic behavior. Section 4 develops the adaptive bootstrap inference that

makes inference feasible in practice (i.e., despite the phase transition), and presents the ac-

companying results on simultaneous inference. Some numerical results are reported in Sec-

tion 5. Section 6 illustrates how to extend the proposed moment-based method and the asso-

ciated theory to sparse β-models. We relegate all the technical proofs to the supplementary

material.

Notation. For any integer d ≥ 1, we write [d] = {1, . . . , d}, and denote by Id the d × d
identity matrix. We denote by I(·) the indicator function. For a vector h = (h1, . . . , hd)

⊤,

we write |h|0 =
∑d

j=1 I(hj 6= 0) and |h|∞ = maxj∈[d] |hj | for its L0-norm and L∞-norm,

respectively. For a countable set S , we use #S or |S| to denote its cardinality. For two

sequences of positive numbers {ap}p≥1 and {cp}p≥1, we write ap . cp or cp & ap if

lim supp→∞ ap/cp <∞, and write ap ≍ cp if and only if ap . cp and cp . ap hold simulta-

neously. We also write ap≪ cp or cp≫ ap if lim supp→∞ ap/cp = 0.

2. Edge differential privacy.

2.1. Definition. We consider simple networks in the sense that there are no self-loops

and there exists at most one edge from one node to another for a directed network, and at

most one edge between two nodes for an undirected network. Such a network with p nodes

can be represented by an adjacency matrix X = (Xi,j)p×p, where Xi,i ≡ 0, and Xi,j = 1
indicating an edge from the i-th node to the j-th node, and 0 otherwise. For undirected net-

works,Xi,j =Xj,i. In this paper, we always assume that the p nodes are fixed and are labeled

as 1, . . . , p. Then a simple network can be represented entirely by its adjacency matrix. To

simplify statements, we often refer to an adjacency matrix X as a network.
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Let X be the set consisting of the adjacency matrices of all the simple and directed (or

undirected) networks with p nodes. For any X= (Xi,j)p×p ∈ X and Y = (Yi,j)p×p ∈ X , the

Hamming distance between X and Y is defined as

(2.1) δ(X,Y) = #{(i, j) ∈ I :Xi,j 6= Yi,j} ,
where I = {(i, j) : 1 ≤ i 6= j ≤ p} for directed networks, and I = {(i, j) : 1 ≤ i < j ≤ p}
for undirected networks. To protect privacy, the original network X is not released directly.

Instead we release a sanitized version Z = (Zi,j)p×p ∈ X of the network, where Z is gen-

erated according to some conditional distribution Q(· |X). Here Q is also called a release

mechanism (Wasserman and Zhou, 2010).

DEFINITION 1 (Edge differential privacy). For any π > 0, a release mechanism (i.e. a

conditional probability distribution) Q satisfies π-edge differential privacy if

(2.2) sup
X,Y∈X : δ(X,Y)=1

sup
Z∈X :Q(Z |X)>0

Q(Z |Y)

Q(Z |X)
≤ eπ .

The definition above equates privacy with the inability to distinguish two close networks. The

privacy parameter π controls the amount of randomness added to released data; the smaller

π is the more protection on privacy. Notice that (2.2) is much more stringent than requiring

|Q(Z |Y)−Q(Z |X)| to be small for any X,Y ∈X with δ(X,Y) = 1. In practice π is often

chosen to be small. Then it follows from (2.2) that

sup
X,Y∈X : δ(X,Y)=1

sup
Z∈X :Q(Z |X)>0

|Q(Z |Y)−Q(Z |X)|
Q(Z |X)

≤ eπ − 1≈ π .

Note that multiple notions of privacy have been introduced for networks; see Jiang et al.

(2020) for a recent survey. In this paper we focus on the notion of edge differential privacy

(e.g., Nissim, Raskhodnikova and Smith (2007)). At the same time, there is a connection

between differential privacy and hypothesis testing.

PROPOSITION 1 (Wasserman and Zhou, 2010). Let the released network Z ∼ Q(· |X)
and Q satisfy π-edge differential privacy for some π > 0. For any given i 6= j, consider

hypothesesH0 :Xi,j = 1 versusH1 :Xi,j = 0. Then the power of any test at the significance

level γ and based on Z, Q and the distribution of X is bounded from above by γeπ , provided

that Xi,j is independent of {Xk,ℓ : (k, ℓ) ∈ I and (k, ℓ) 6= (i, j)}.

Proposition 1 implies that if Z is released through Q which satisfies π-edge differential

privacy and π is sufficiently small, it is virtually impossible to identify whether an edge ex-

ists (i.e. Xi,j = 1) or not (i.e. Xi,j = 0) in the original network through statistical tests, as

the power of any test is bounded by its significance level multiplied by eπ . The independence

condition in Proposition 1 is satisfied by the Erdös-Rényi class of models for which all edges

are independent, including the β-model and the well-known stochastic block model. Propo-

sition 1 follows almost immediately from the Neyman-Pearson lemma for the optimality of

likelihood ratio tests for simple null and simple alternative hypotheses. It was first proved by

Wasserman and Zhou (2010) with independent observations. Since their proof can be adapted

to our setting in a straightforward manner, we omit the details.

For further discussion on differential privacy under more general settings, we refer to

Dwork et al. (2006) and Wasserman and Zhou (2010).
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2.2. Edge privacy via jittering. Now we introduce the data release mechanism of

Karwa, Krivitsky and Slavković (2017), which is formally the same as the noisy network

structure adopted in Chang, Kolaczyk and Yao (2022). This approach releases a jittered ver-

sion of the entire network. The word ‘jittering’ means that a small amount of noise is added

to every single data point (Hennig, 2007).

For I specified just after (2.1) above, we define a data release mechanism as follows:

(2.3) Zi,j =Xi,jI(εi,j = 0) + I(εi,j = 1)

for each (i, j) ∈ I . In the above expression, {εi,j}(i,j)∈I are independent random variables

only taking three possible values −1,0 and 1 with

(2.4) P(εi,j = 1) = α , P(εi,j = 0) = 1− α− β and P(εi,j =−1) = β ,

where α,β ∈ [0,0.5]. For an undirected network, Zi,j = Zj,i for j > i. Then it follows from

(2.3) and (2.4) that

(2.5) P(Zi,j = 1 |Xi,j = 0) = α and P(Zi,j = 0 |Xi,j = 1) = β .

Furthermore the proposition below follows from (2.2) and (2.5) immediately. See also Propo-

sition 1 of Karwa, Krivitsky and Slavković (2017).

PROPOSITION 2. The data release mechanism (2.3) satisfies π-edge differential privacy

with

π = log

{
max

(
α

1− β ,
β

1− α ,
1−α
β

,
1− β
α

)}
.

REMARK 1. Notice that

α

1− β = 1− 1− α− β
1− β ,

β

1−α = 1− 1−α− β
1− α ,

1− α
β

= 1+
1− α− β

β
,

1− β
α

= 1+
1−α− β

α
,

where 1− α− β ≥ 0. Then the differential privacy parameter π given in Proposition 2 can

be reformulated as

π = log

{
1 + (1−α− β)max

(
− 1

1− β , −
1

1− α ,
1

β
,
1

α

)}

= log

{
1 + (1−α− β)max

(
1

β
,
1

α

)}
= log

{
1 +

1−α− β
min(α,β)

}
.

Recall α,β ∈ [0,0.5]. The maximum privacy is achieved by setting α = β = 0.5, as then

π = 0. By (2.3) and (2.4), Zi,j = I(εi,j = 1) then, i.e. Z carries no information about X. In

order to achieve high privacy, we need to use large α and β. Due to α,β ∈ [0,0.5], when

π→ 0, min(α,β) cannot converge to zero, which means there exists a constant ǫ ∈ (0,0.5)
such that min(α,β)> ǫ when π→ 0. Hence, when π→ 0, we have π ≍ 1−α−β. In Section

3 below we will develop statistical inference approaches for the original network X based on

the released data Z with π→ 0.

3. Differentially private inference for the β-model. In this section we introduce a new

method-of-moments estimator for the parameters of the network β-model and characterize

the asymptotic behavior of this estimator, through which we discover an interesting phase

transition.
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3.1. The β-model. The so-called β-model (Chatterjee, Diaconis and Sly, 2011) for undi-

rected networks is characterized by p parameters θ = (θ1, . . . , θp)
⊤ ∈ Rp which define the

probability function

(3.1) P(Xi,j = 1) =
exp(θi + θj)

1 + exp(θi + θj)
, i 6= j .

The parameter θi in this model has a natural interpretation as it measures the propensity of

node i to have connections with other nodes. Namely, the larger θi is, the more likely node i
is connected to other nodes. The likelihood function for β-model is given by

f(X;θ) =
∏

i,j: i<j

exp{(θi + θj)Xi,j}
1 + exp(θi + θj)

∝ exp(U1θ1 + · · ·+Upθp) ,

where Ui =
∑

j: j 6=iXi,j is the degree of the i-th node. Hence the degree sequence U =

(U1, . . . ,Up)
⊤ is a sufficient statistic.

Denote by θ̃(U) = {θ̃1(U), . . . , θ̃p(U)}⊤ the MLE for θ based on U. For given degree

sequence U, θ̃(U) must satisfy the following moment equations:

Ui =
∑

j: j 6=i

exp{θ̃i(U) + θ̃j(U)}
1 + exp{θ̃i(U) + θ̃j(U)}

, i ∈ [p] .

Unfortunately θ̃(U) may not exist; see Theorem 1 of Karwa and Slavković (2016) for neces-

sary and sufficient conditions for the existence of θ̃(U). When θ̃(U) exists, Chatterjee, Diaconis and Sly

(2011) show that

(3.2) |θ̃(U)− θ|∞ ≤C∗

√
log p

p

with probability at least 1 − C∗p
−2, where C∗ > 0 is a constant depending only on |θ|∞.

For any fixed integer s ≥ 1 and distinct ℓ1, . . . , ℓs ∈ [p], Yan and Xu (2013) establish the

asymptotic normality of {θ̃ℓ1(U), . . . , θ̃ℓs(U)}⊤ as p→∞, which can be used to construct

joint confidence regions for (θℓ1 , . . . , θℓs)
⊤. However, to our best knowledge, simultaneous

inference for all p parameters in the β-model remains unresolved in the literature.

Karwa and Slavković (2016) consider differentially private MLE for θ based on a noisy

version of the degree sequence. More specifically, the noisy degree sequence in their setting

is defined as U+V, where the components of V = (V1, . . . , Vp)
⊤ are drawn independently

from a discrete Laplace distribution with the probability mass function

P(V = v) =
(1− κ)κ|v|

1 + κ

for any integer v with κ= exp(−π/2). Karwa and Slavković (2016) propose a two-step pro-

cedure: (a) find the MLE U∗ for U based on U + V, and (b) estimate θ by θ̃(U∗). For

any fixed integer s ≥ 1 and distinct ℓ1, . . . , ℓs ∈ [p], Theorem 4 of Karwa and Slavković

(2016) shows that {θ̃ℓ1(U∗), . . . , θ̃ℓs(U
∗)}⊤ shares the same asymptotic normality as

{θ̃ℓ1(U), . . . , θ̃ℓs(U)}⊤ when π ≍ (log p)−1/2. To appreciate this ‘free privacy’ result, let

us assume first that |θ|∞ ≤C for some universal constant C > 0. Then there exists a univer-

sal constant C̃ > 1 such that C̃−1p≤mini∈[p]Ui ≤maxi∈[p]Ui ≤ C̃p holds almost surely as

p→∞. On the other hand, when π ≍ (log p)−1/2, Lemma C in the supplementary material

of Karwa and Slavković (2016) indicates that |U∗ −U|∞ ≤
√
6p1/2 log1/2 p holds almost

surely as p→∞, which implies that U∗ is dominated by U. Based on this result, Theorem

3 of Karwa and Slavković (2016) shows that θ̃(U∗) exists and is unique and can be used to
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estimate θ with uniform accuracy in all coordinates when π ≍ (log p)−1/2. However, when

π≪ (log p)−1/2, the asymptotic behavior of θ̃(U∗) is unknown.

Our interest in this paper is on differentially private estimation based on released data

Z= (Zi,j)p×p generated by the more general jittering mechanism (2.3). Remark 1 in Section

2.2 shows that Z is π-differentially private with π ≍ 1−α−β. To gain more appreciation of

the impact of the privacy level π on the efficiency of inference, we introduce a new moment-

based estimation for θ based on Z. We then establish the asymptotic theory under the setting

that p→∞ and π may vary with respect to p. Of particular interest is the findings when π→
0 together with p→∞. It turns out the asymptotic distribution of the new proposed estimator

depends intimately on the interplay between π and p, exhibiting interesting phase transition

in the convergence rate and the asymptotic variance as π decays to zero as a function of p.

See Theorem 1 and Remark 3(a) in Section 3.3. To overcome the complexity in inference

due to the phase transition, a novel bootstrap method is proposed, which provides a uniform

inference regardless different phases. In addition, it also facilitates the simultaneous inference

for all the p components of θ as p→∞.

3.2. A new moment-based estimator. Under the β-model (3.1), it holds that

P(Xi,j = 1)

P(Xi,j = 0)
= exp(θi + θj)

for any i 6= j, which implies

(3.3)
P(Xi,ℓ = 1)P(Xi,j = 0)P(Xℓ,j = 1)

P(Xi,ℓ = 0)P(Xi,j = 1)P(Xℓ,j = 0)
= exp(2θℓ) , i 6= j 6= ℓ .

Since only the sanitized network Z = (Zi,j)p×p, defined as in (2.3)–(2.5), is available, we

represent (3.3) in terms of the probabilities of Zi,j . For τ ∈ {0,1}, put

ϕτ (x) = (x−α)τ (1− β − x)1−τ

with x ∈ {0,1}. Then for any i 6= j,

P(Xi,j = 0) =
E{ϕ0(Zi,j)}
1− α− β and P(Xi,j = 1) =

E{ϕ1(Zi,j)}
1−α− β .(3.4)

To simplify the notation, we write ϕτ (Zi,j) as ϕ(i,j),τ for any i 6= j and τ ∈ {0,1}. Since

{Zi,j : i < j} is a sequence of independent random variables and Zi,j = Zj,i for any i 6= j, it

follows from (3.3) that

(3.5)
E{ϕ(i,ℓ),1ϕ(i,j),0ϕ(ℓ,j),1}
E{ϕ(i,ℓ),0ϕ(i,j),1ϕ(ℓ,j),0}

= exp(2θℓ) , i 6= j 6= ℓ .

For each ℓ ∈ [p], let

µℓ,1 =
1

|Hℓ|
∑

(i,j)∈Hℓ

E{ϕ(i,ℓ),1ϕ(i,j),0ϕ(ℓ,j),1} ,(3.6)

µℓ,2 =
1

|Hℓ|
∑

(i,j)∈Hℓ

E{ϕ(i,ℓ),0ϕ(i,j),1ϕ(ℓ,j),0} ,(3.7)

where Hℓ = {(i, j) : i, j 6= ℓ such that i < j}. By (3.5), we have

θℓ =
1

2
log

(
µℓ,1
µℓ,2

)
.



8

Hence a moment-based estimator for θℓ can be defined as

(3.8) θ̂ℓ =
1

2
log

(
µ̂ℓ,1
µ̂ℓ,2

)
,

where

µ̂ℓ,1 =
1

|Hℓ|
∑

(i,j)∈Hℓ

ϕ(i,ℓ),1ϕ(i,j),0ϕ(ℓ,j),1 ,(3.9)

µ̂ℓ,2 =
1

|Hℓ|
∑

(i,j)∈Hℓ

ϕ(i,ℓ),0ϕ(i,j),1ϕ(ℓ,j),0 .(3.10)

3.3. Asymptotic properties and phase transition. We always confine (α,β) ∈M(γ;C1)
with

M(γ;C1) =
{
(α,β) :C1 <α,β < 0.5 ,1− α− β = γ

}

for some γ ∈ (0,1] and C1 ∈ (0,0.5). Our theoretical analysis allows γ to be a constant, or

to vary with respect to p. Of particular interest are the cases when γ→ 0 (at different rates)

together with p→∞. When (α,β) ∈M(γ;C1) for some fixed constants C1 ∈ (0,0.5), it

follows from Remark 1 in Section 2.2 that the privacy level π ≍ γ.

3.3.1. Consistency. Proposition 3 below presents the consistency for the moment-based

estimator θ̂ℓ defined in (3.8), which indicates that θℓ can be estimated consistently under the

edge π-differential privacy with π→ 0, as long as π≫ p−1/3 log1/6 p.

CONDITION 1. There exists a universal constant C3 > 0 such that |θ|∞ ≤C3.

PROPOSITION 3. Let Condition 1 hold and (α,β) ∈M(γ;C1) for some fixed constant

C1 ∈ (0,0.5). If γ≫ p−1/3 log1/6 p, it then holds that

max
ℓ∈[p]
|θ̂ℓ− θℓ|=Op

(
log1/2 p

γ3p

)
+Op

(
log1/2 p

γp1/2

)
.

REMARK 2. (a) By Condition 1 and (3.4), we know

min
τ∈{0,1}

min
i,j: i 6=j

E{ϕ(i,j),τ} ≍ γ ≍ max
τ∈{0,1}

max
i,j: i 6=j

E{ϕ(i,j),τ} ,

which implies

min
k∈{1,2}

min
ℓ∈[p]

µℓ,k ≍ γ3 ≍ max
k∈{1,2}

max
ℓ∈[p]

µℓ,k .

Lemma 1 in the supplementary material shows that

max
k∈{1,2}

max
ℓ∈[p]
|µ̂ℓ,k − µℓ,k|=Op

(
log1/2 p

p

)
+Op

(
γ2 log1/2 p

p1/2

)
+Op

(
γ log p

p

)
.

To make (µ̂ℓ,1, µ̂ℓ,2) be a valid estimate of (µℓ,1, µℓ,2), we need to require p−1 log1/2 p =

o(γ3), γ2p−1/2 log1/2 p= o(γ3) and γp−1 log p= o(γ3). Hence, we need the restriction γ≫
p−1/3 log1/6 p. Notice that the privacy level π ≍ γ. In order to ensure the consistency of θ̂ℓ,
the edge differential privacy level π must satisfy condition π≫ p−1/3 log1/6 p.

(b) Recall εi,j involved in the data release mechanism (2.3) for Zi,j is a discrete random

variable that only takes three possible values −1,0 and 1. When α = β = 0, εi,j ≡ 0, and

our moment-based estimator (3.8) is then constructed based on the original network X. By
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setting γ = 1 in our proof of Proposition 3, we can establish the following convergence rate

for our moment-based estimator based on the original network X:

max
ℓ∈[p]
|θ̂ℓ − θℓ|=Op

(
log1/2 p

p1/2

)
,

which shares the same convergence rate of the MLE of Chatterjee, Diaconis and Sly (2011);

see (3.2) in Section 3.1.

3.3.2. Asymptotic normality. PutN = (p−1)(p−2). Proposition 4 gives the asymptotic

expansion of θ̂ℓ− θℓ, which can be obtained from the proof of Theorem 1 in Section B of the

supplementary material. For any i 6= ℓ, let

λi,ℓ =
1

p− 2

∑

j: j 6=ℓ,i

[
1

µℓ,1
E{ϕ(ℓ,j),1}E{ϕ(i,j),0}+

1

µℓ,2
E{ϕ(ℓ,j),0}E{ϕ(i,j),1}

]
.(3.11)

PROPOSITION 4. For any i 6= j, write Z̊i,j = Zi,j − E(Zi,j). Let Condition 1 hold and

(α,β) ∈M(γ;C1) for some fixed constant C1 ∈ (0,0.5). If γ≫ p−1/3 log1/6 p, it then holds

that

θ̂ℓ− θℓ = T̃ℓ,1 + T̃ℓ,2 + R̃ℓ ,

where

T̃ℓ,1 =−
1

N

∑

i,j: i 6=j, i,j 6=ℓ

(
µℓ,1 + µℓ,2
2µℓ,1µℓ,2

)
Z̊i,ℓZ̊ℓ,jZ̊i,j and T̃ℓ,2 =

1

p− 1

∑

i: i 6=ℓ

λi,ℓZ̊i,ℓ

satisfy T̃ℓ,1 = Op(γ
−3p−1) and T̃ℓ,2 = Op(γ

−1p−1/2), and the remainder term R̃ℓ satisfies

R̃ℓ =Op(γ
−6p−2) +Op(γ

−2p−1 log p).

The leading term in the asymptotic expansion of θ̂ℓ − θℓ will be different for different

scenarios of γ: T̃ℓ,2, a partial sum of independent random variables, serves as the leading

term if γ ≫ p−1/4, T̃ℓ,1 + T̃ℓ,2 is the leading term if γ ≍ p−1/4, and T̃ℓ,1, a generalized U -

statistic, is the leading term if p−1/4≫ γ≫ p−1/3 log1/6 p. Such characteristic will lead to

a phase transition phenomenon in the limiting distribution of the proposed moment-based

estimator. Put

bℓ =
1

p− 1

∑

i: i 6=ℓ

λ2i,ℓVar(Zi,ℓ) ,(3.12)

b̃ℓ =
1

2N

(
µℓ,1 + µℓ,2
µℓ,1µℓ,2

)2 ∑

i,j: i 6=j, i,j 6=ℓ

Var(Zi,ℓ)Var(Zℓ,j)Var(Zi,j) .(3.13)

THEOREM 1. Let Condition 1 hold and (α,β) ∈ I ∈M(γ;C1) for some fixed constant

C1 ∈ (0,0.5). Let 1≤ ℓ1 < · · ·< ℓs ≤ p be any s given indices for some fixed integer s≥ 1.

As p→∞, the following three assertions hold.

(a) If γ≫ p−1/4, then

(p− 1)1/2diag(b
−1/2
ℓ1

, . . . , b
−1/2
ℓs

)(θ̂ℓ1 − θℓ1 , . . . , θ̂ℓs − θℓs)⊤→N (0, Is)

in distribution.

(b) If p−1/4≫ γ≫ p−1/3 log1/6 p, then

N1/2 diag(b̃
−1/2
ℓ1

, . . . , b̃
−1/2
ℓs

)(θ̂ℓ1 − θℓ1 , . . . , θ̂ℓs − θℓs)⊤→N (0, Is)
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in distribution.

(c) If γ ≍ p−1/4, then

N1/2 diag[{(p− 2)bℓ1 + b̃ℓ1}−1/2, . . . ,{(p− 2)bℓs + b̃ℓs}−1/2]

× (θ̂ℓ1 − θℓ1 , . . . , θ̂ℓs − θℓs)⊤→N (0, Is)

in distribution.

REMARK 3. (a) Theorem 1 presents the asymptotic normality of the proposed esti-

mator when p →∞ and also, possibly, π ≍ γ → 0. It can be shown that bℓ ≍ γ−2 and

b̃ℓ ≍ γ−6 under Condition 1. The limiting distribution depends on the relative rates of p
and γ intimately; yielding an interesting phase transition phenomenon in the convergence

rate. More precisely, when γ ≫ p−1/4 (including the case γ is a fixed constant), we have

|θ̂ℓ − θℓ|= Op(p
−1/2γ−1). On the other hand, |θ̂ℓ − θℓ|= Op(p

−1/4) when γ ≍ p−1/4, and

Op(p
−1γ−3) when p−1/4≫ γ≫ p−1/3 log1/6 p.

(b) The asymptotic normality of the proposed moment-based estimator with the original

network X can be also established. By setting γ = 1 (i.e. α= β = 0) in our technical proof

of Theorem 1(a), we can show p1/2b
−1/2
ℓ (θ̂ℓ − θℓ)→N (0,1) in distribution.

(c) Theorem 1 cannot be used to construct confidence intervals for θℓ directly since we

would have to overcome two obstacles: (i) to identify the most appropriate phase in terms of

relative sizes between γ and p, and (ii) to estimate bℓ and b̃ℓ which determine the asymptotic

variances. For (ii), we give their estimates in the Appendix. Unfortunately (i) is extremely

difficult if not impossible, as in practice we only have one γ and one p. Proposition 6 in the

Appendix shows that (ii) is only partially attainable, as, for example, bℓ cannot be estimated

consistently when p−1/4 . γ . p−1/4 log1/4 p. In practice, we always need π→ 0 for retain-

ing the privacy. With π→ 0, (i) can be overcome from a new perspective. More specifically,

let νℓ = (p− 2)bℓ + b̃ℓ for any ℓ ∈ [p]. Note that bℓ ≍ γ−2 and b̃ℓ ≍ γ−6 under Condition 1,

and γ ≍ π when π→ 0. Then (p− 2)bℓ/νℓ→ 1 when 1≫ γ≫ p−1/4, and b̃ℓ/νℓ→ 1 when

γ≪ p−1/4. Recall N = (p−1)(p−2). Hence, as γ ≍ π→ 0, the three asymptotic assertions

in Theorem 1 admit a uniform representation:

N1/2 diag(ν
−1/2
ℓ1

, . . . , ν
−1/2
ℓs

)(θ̂ℓ1 − θℓ1 , . . . , θ̂ℓs − θℓs)⊤→N (0, Is)

in distribution. However, even with the additional requirement π→ 0, we still cannot obtain

a consistent estimate for νℓ by the plug-in method with estimating bℓ and b̃ℓ separately for

all γ≫ p−1/3 log1/6 p. A novel adaptive bootstrap procedure will be developed in Section 4,

which provides a unified estimation procedure for νℓ when γ ≍ π→ 0 across the three dif-

ferent phases. On the other hand, the inference with γ being a fixed constant can be obtained

based on Theorem 1 with the estimated b̂ℓ specified in the Appendix.

4. Adaptive bootstrap inference. The goal of this section is primarily two-fold. First,

we construct a novel bootstrap confidence interval for θℓ which is automatically adaptive to

the three phases identified in Theorem 1. Second, we leverage the new bootstrap procedure

with Gaussian approximation to provide simultaneous inference for all p components of θ

as p→∞. Additionally, we provide an algorithm for data-adaptive selection of a working

parameter in our approach. In the sequel, we always assume that the privacy level π→ 0
together with the number of nodes p→∞.
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4.1. Bootstrap algorithm and simultaneous inference. As we have discussed in Remark

3(c), it holds that

(4.1) N1/2 diag(ν
−1/2
ℓ1

, . . . , ν
−1/2
ℓs

)(θ̂ℓ1 − θℓ1 , . . . , θ̂ℓs − θℓs)⊤→N (0, Is)

in distribution as γ ≍ π→ 0, where νℓ = (p − 2)bℓ + b̃ℓ. Now we reproduce this structure

in a bootstrap world based on the available network Z. The goal is to estimate νℓ adaptively

regardless of the decay rate of γ.

Recall I = {(i, j) : 1 ≤ i < j ≤ p}. For a given constant δ ∈ (0,0.5), we draw bootstrap

samples Z† = (Z†
i,j)p×p according to

(4.2) Z†
i,j ≡ Z

†
j,i = Zi,jI(ηi,j = 0) + I(ηi,j = 1) , (i, j) ∈ I ,

where {ηi,j}(i,j)∈I are independent and identically distributed random variables only taking

three possible values −1,0 and 1 with

P(ηi,j = 0) = 1− 2δ , P(ηi,j = 1) = δ and P(ηi,j =−1) = δ .

For i 6= j and τ ∈ {0,1}, put

ϕ†
τ (x) = {x− δ −α(1− 2δ)}τ {1− δ− β(1− 2δ)− x}1−τ

with x ∈ {0,1}. To simplify the notation, we write ϕ†
τ (Z

†
i,j) as ϕ†

(i,j),τ
for any i 6= j and

τ ∈ {0,1}. Note that

P(Xi,j = 0) =
E{ϕ†

(i,j),0}
(1− 2δ)(1−α− β) and P(Xi,j = 1) =

E{ϕ†
(i,j),1}

(1− 2δ)(1−α− β) .

For any given (i, j) such that i 6= j, we know Z†
i,j is independent of {Z†

ĩ,j̃
: |{̃i, j̃} ∩ {i, j}| ≤

1}. Hence, it follows from (3.3) that

(4.3)
E{ϕ†

(i,ℓ),1ϕ
†
(i,j),0ϕ

†
(ℓ,j),1}

E{ϕ†
(i,ℓ),0ϕ

†
(i,j),1ϕ

†
(ℓ,j),0}

= exp(2θℓ) , i 6= j 6= ℓ ,

which is a bootstrap analogue of (3.5). Similarly, we define a bootstrap estimator for θℓ as:

(4.4) θ̂†ℓ =
1

2
log

(
µ̂†ℓ,1

µ̂†ℓ,2

)
,

where

µ̂†ℓ,1 =
1

|Hℓ|
∑

(i,j)∈Hℓ

ϕ†
(i,ℓ),1ϕ

†
(i,j),0ϕ

†
(ℓ,j),1 ,

µ̂†ℓ,2 =
1

|Hℓ|
∑

(i,j)∈Hℓ

ϕ†
(i,ℓ),0ϕ

†
(i,j),1ϕ

†
(ℓ,j),0 .

Such defined µ̂†ℓ,1 and µ̂†ℓ,2 are, respectively, the bootstrap analogues of µ̂ℓ,1 and µ̂ℓ,2 defined

as (3.9) and (3.10). For µℓ,1, µℓ,2 and λi,ℓ defined as (3.6), (3.7) and (3.11), we define their



12

bootstrap analogues, respectively, as

µ†ℓ,1 =
1

|Hℓ|
∑

(i,j)∈Hℓ

E
{
ϕ†
(i,ℓ),1ϕ

†
(i,j),0ϕ

†
(ℓ,j),1

}
,

µ†ℓ,2 =
1

|Hℓ|
∑

(i,j)∈Hℓ

E
{
ϕ†
(i,ℓ),0

ϕ†
(i,j),1

ϕ†
(ℓ,j),0

}
,

λ†i,ℓ =
1

p− 2

∑

j: j 6=ℓ,i

[
1

µ†ℓ,1
E
{
ϕ†
(ℓ,j),1

}
E
{
ϕ†
(i,j),0

}
+

1

µ†ℓ,2
E
{
ϕ†
(ℓ,j),0

}
E
{
ϕ†
(i,j),1

}]
.

Then θ̂†ℓ admits a similar asymptotic property as (4.1). To present it explicitly, we let

ν†ℓ = (p− 2)b†ℓ + b̃†ℓ , ℓ ∈ [p] ,(4.5)

where

b†ℓ =
1

p− 1

∑

i: i 6=ℓ

λ†,2i,ℓVar(Z
†
i,ℓ) ,

b̃†ℓ =
1

2N

(
µ†ℓ,1 + µ†ℓ,2

µ†ℓ,1µ
†
ℓ,2

)2 ∑

i,j: i 6=j, i,j 6=ℓ

Var(Z†
i,ℓ)Var(Z

†
ℓ,j)Var(Z

†
i,j) .

THEOREM 2. Let the conditions of Theorem 1 hold, and δ ∈ (0, c] for some positive

constant c < 0.5. As p→∞, if 1≫ γ≫ p−1/3 log1/6 p, the following two assertions hold.

(a) Let 1≤ ℓ1 < · · ·< ℓs ≤ p be any s given indices for some fixed integer s≥ 1. Then

N1/2 diag(ν
†,−1/2
ℓ1

, . . . , ν
†,−1/2
ℓs

)(θ̂†ℓ1 − θℓ1 , . . . , θ̂
†
ℓs
− θℓs)⊤→N (0, Is)

in distribution.

(b) maxℓ∈[p] |ν†ℓν−1
ℓ − 1|=O(δ), where νℓ is specified in (4.1).

Theorem 2 indicates that ν†ℓ/νℓ→ 1 for any 1≫ γ≫ p−1/3 log1/6 p provided that we set

δ = o(1). For fixed s≥ 1 and given 1≤ ℓ1 < · · ·< ℓs ≤ p, we can draw bootstrap samples Z†

as in (4.2) with some δ = o(1), and compute the bootstrap estimate (θ̂†ℓ1 , . . . , θ̂
†
ℓs
)⊤ defined in

(4.4) based on Z†. We repeat this procedure M times for some large integer M and compute

ν̂†ℓk =
N

M

M∑

m=1

{θ̂†,(m)
ℓk

− ¯̂
θ†ℓk}

2 , k ∈ [s] ,

with
¯̂
θ†ℓk =M−1

∑M
m=1 θ̂

†,(m)
ℓk

, where {θ̂†,(m)
ℓ1

, . . . , θ̂
†,(m)
ℓs
}⊤ is the associated bootstrap esti-

mate in the m-th repetition. Then a confidence region for (θℓ1 , . . . , θℓs)
⊤ can be constructed

based on the asymptotic approximation

N1/2 diag(ν̂
†,−1/2
ℓ1

, . . . , ν̂
†,−1/2
ℓs

)(θ̂ℓ1 − θℓ1 , . . . , θ̂ℓs − θℓs)⊤
d≈N (0, Is) .

Importantly, we note that in both Theorems 1 and 2, s is a fixed integer when p→∞.

Hence the inference methods presented so far are not applicable to all p components of

θ simultaneously. However, a breakthrough can be had via the Gaussian approximation

in Theorem 3 below. To our best knowledge, this is the first method for simultaneous in-

ference for all the p components of θ in the β-model. Write θ̂ = (θ̂1, . . . , θ̂p)
⊤ where θ̂ℓ

is the proposed moment-based estimator given in (3.8) based on the sanitized data Z. As
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shown in Proposition 4, the leading term of θ̂ − θ cannot be formulated as a partial sum

of independent (or weakly dependent) random vectors, which is different from the stan-

dard framework of Gaussian approximation (Chernozhukov, Chetverikov and Kato, 2013;

Chang, Chen and Wu, 2024). Hence the existing results of Gaussian approximation cannot

be applied directly to obtain Theorem 3, which requires significant technical challenge to be

overcome in our theoretical analysis.

THEOREM 3. Let Condition 1 hold and (α,β) ∈M(γ;C1) for some fixed constant C1 ∈
(0,0.5). As p→∞, if 0< δ≪ (p log p)−1 and 1≫ γ≫ p−1/3 log1/2 p, then

sup
u∈Rp

∣∣P
{
N1/2(V†)−1/2(θ̂− θ)≤ u

}
− P(ξ ≤ u)

∣∣→ 0 ,

where V† = diag(ν†1, . . . , ν
†
p), and ξ ∼N (0, Ip).

Let ξ = (ξ1, . . . , ξp)
⊤ ∼N (0, Ip). For any J = {ℓ1, . . . , ℓs} ⊂ [p], write

V
†
J = diag(ν†ℓ1 , . . . , ν

†
ℓs
) , θ̂J = (θ̂ℓ1 , . . . , θ̂ℓs)

⊤ ,

θJ = (θℓ1 , . . . , θℓs)
⊤ , ξJ = (ξℓ1 , . . . , ξℓs)

⊤ .

Following the same arguments in the proof of Proposition 1 in the supplementary material of

Chang et al. (2017), we can obtain from Theorem 3 that

sup
J

sup
u∈R

∣∣P
{
N1/2|(V†

J )
−1/2(θ̂J − θJ )|∞ ≤ u

}
− P(|ξJ |∞ ≤ u)

∣∣→ 0

as p→∞. Given α ∈ (0,1) and J ⊂ [p],

ΘJ ,α :=

{
a ∈R

|J | :N1/2|(V†
J )

−1/2(θ̂J − a)|∞ ≤Φ−1

(
1 + α1/|J |

2

)}
(4.6)

is a 100 ·α% confidence region for θJ , where Φ(·) is the cumulative distribution function of

the standard normal distribution. We refer to Section 4 of Chang et al. (2018) for applications

of this type of confidence region in simultaneous inference. If γ is a fixed constant, Theorem

3 still holds with replacing V† by (p − 2) · diag(b̂1, . . . , b̂p) where b̂ℓ is given in (A.6) in

the Appendix. If we set α= β = 0 in the jittering mechanism (2.3)–(2.5), then γ = 1 in this

case and the released data Z is identical to the original data X. Our simultaneous inference

procedure still also works in this case.

4.2. Adaptive selection of δ. The tuning parameter δ plays a key role in our simultaneous

inference procedure. We propose a data-driven method in Algorithm 1 to select δ. To illustrate

the basic idea, we denote by ν†ℓ (δ) the associated ν†ℓ defined in (4.5) with δ used in generating

the bootstrap samples Z† in (4.2). If {νℓ}ℓ∈J are known, the ideal selection for the tuning

parameter δ should be

δopt = argmin
δ>0

max
ℓ∈J
|ν†ℓ (δ)− νℓ| .

Unfortunately, {νℓ}ℓ∈J are unknown in practice, as they depend on the unknown parameters

θ1, . . . , θp. A natural idea is to replace νℓ’s by their estimates. Recall θ̂ℓ = 2−1 log(µ̂ℓ,1µ̂
−1
ℓ,2)

with

µ̂ℓ,1 =
1

|Hℓ|
∑

(i,j)∈Hℓ

ϕ(i,ℓ),1ϕ(i,j),0ϕ(ℓ,j),1 ,

µ̂ℓ,2 =
1

|Hℓ|
∑

(i,j)∈Hℓ

ϕ(i,ℓ),0ϕ(i,j),1ϕ(ℓ,j),0 .
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Due to the nonlinear function log(·) and the ratio between µ̂ℓ,1 and µ̂ℓ,2, θ̂ℓ usually includes

some high-order bias term. More specifically,

θ̂ℓ − θℓ =
µ̂ℓ,1 − µℓ,1

2µℓ,1
− µ̂ℓ,2− µℓ,2

2µℓ,2
+

(µ̂ℓ,2 − µℓ,2)2
4µ2ℓ,2

− (µ̂ℓ,1 − µℓ,1)2
4µ2ℓ,1︸ ︷︷ ︸

high-order bias

+R̂ℓ ,

where R̂ℓ is a negligible term in comparison to the high-order bias. Although the high-order

bias has little impact on the estimation of θℓ, it may lead to a bad estimate of νℓ if we just

plug-in θ̂1, . . . , θ̂p in the nonlinear function νℓ which depends on θ1, . . . , θp. Hence, when

we replace {νℓ}ℓ∈J in Algorithm 1, we use their associated estimates with bias-corrected

θ̂bc1 , . . . , θ̂
bc
p . Based on the optimal δ̂opt selected in Algorithm 1, we can replace the values

{ν†ℓ}ℓ∈J in (4.6) by {ν̂†ℓ (δ̂opt)}ℓ∈J specified in Algorithm 1 to construct a 100 ·α% simulta-

neous confidence region for θJ in practice.

5. Numerical study.

5.1. Simulation. In this section we illustrate the finite sample properties of our proposed

method of estimation and inference for the unknown parameters in the β-model by simu-

lation. For p ∈ {1000,2000}, we draw θ1, . . . , θp independently from N (0,0.2), and then

generate the adjacency matrix X according to the β-model (3.1). For a given original net-

work X, we set α = β ∈ {0,0.1,0.2,0.3} in the data release mechanism (2.3) and (2.4) to

generate Z. Note that Z=X when α= β = 0.

Based on the released data Z, we applied the moment-based method (3.8) to estimate

θ = (θ1, . . . , θp)
⊤, and then calculated the estimation error L(θ̂) = p−1|θ̂ − θ|22. For com-

parison, we also considered to apply the MLE of Karwa and Slavković (2016) to the degree

sequence of the released data Z. Table 1 reports the averages, medians and standard devia-

tions of the estimation errors over 500 replications. The proposed moment-based estimation

performed competitively in relation to the MLE, though the MLE is slightly more accurate

overall. However the MLE method is memory-demanding when p is large. For example with

p = 1000 and α = β = 0.1, the step generating a graph with given degree sequence (i.e.

Algorithm 2 of Karwa and Slavković (2016)) occupied 3.91 GB memory. In contrast, the

newly proposed moment-based estimation only used 38.19 MB memory. Furthermore, the

MLE is excessively time-consuming computationally when p is large. See Table 1 for the

recorded average CPU times for each realization on an Intel(R) Xeon(R) Platinum 8160 pro-

cessor (2.10GHz). With p = 1000, the average required CPU time for computing the MLE

once is over 471 minutes with the original data X (i.e. α = β = 0) and is almost double

with the sanitized data Z (i.e. α,β > 0). It is practically infeasible to conduct the simulation

(with replications) for all scenarios with p= 2000, for which we only report the results with

α= β = 0 with the average CPU time 5095 minutes per estimation.

We note that Algorithm 2 of Karwa and Slavković (2016) might be made more efficient if

it is modified to directly estimate the node degree sequence without actually producing the

intermediate graph, the latter step which requires MCMC. Additionally, such an approach

might also help with convergence issues. In particular, and as an important caveat to the

above results, we note that in order to achieve MLE estimates for 500 trials in our simulations

it was necessary to discard a nontrivial fraction of trials for which the MCMC algorithm

failed to converge. Specifically, when α= β = 0.1, 0.2, and 0.3, the proportion of trials that

needed to be discarded were, respectively, 3%, 10% and 21%. That is, MLE convergence was

increasingly problematic with increasing noise level and hence with increasing privacy. No

trials were discarded for our proposed moment-based approach.

Based on our moment-based estimator θ̂, we also constructed the simultaneous confidence

regions (4.6) for all the p components θ1, . . . , θp. To determine the tuning parameter δ, we
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Algorithm 1 Selecting tuning parameter δ

1: obtain {θ̂ℓ}
p
ℓ=1, {µ̂ℓ,1}

p
ℓ=1 and {µ̂ℓ,2}

p
ℓ=1 based on (3.8), (3.9) and (3.10), respectively.

2: calculate

ϕ̂(i,j,ℓ),1 =
(1−α− β) exp(θ̂i + θ̂ℓ)

1 + exp(θ̂i + θ̂ℓ)

1−α− β

1+ exp(θ̂i + θ̂j)

(1− α− β) exp(θ̂ℓ + θ̂j)

1 + exp(θ̂ℓ + θ̂j)
,

ϕ̂(i,j,ℓ),2 =
1−α− β

1 + exp(θ̂i + θ̂ℓ)

(1− α− β) exp(θ̂i + θ̂j)

1 + exp(θ̂i + θ̂j)

1− α− β

1+ exp(θ̂ℓ + θ̂j)
.

3: repeat

4: leave out one (i, j) ∈Hℓ randomly and denote by H−
ℓ the set including the rest elements in Hℓ.

5: calculate

µ̃ℓ,1 =
1

|H−
ℓ |

∑

(i,j)∈H−

ℓ

ϕ̂(i,j,ℓ),1 and µ̃ℓ,2 =
1

|H−
ℓ |

∑

(i,j)∈H−

ℓ

ϕ̂(i,j,ℓ),2 ,

which provide the estimates of µℓ,1 and µℓ,2, respectively.

6: calculate

biasℓ = 4−1
µ̃
−2
ℓ,2 (µ̂ℓ,2 − µ̃ℓ,2)

2 − 4−1
µ̃
−2
ℓ,1 (µ̂ℓ,1 − µ̃ℓ,1)

2
.

7: until M replicates obtained, for a large integer M , and get bias
(1)
ℓ , . . . ,bias

(M)
ℓ .

8: approximate the high-order bias in θ̂ℓ by

b̂iasℓ =
1

M

M∑

m=1

bias
(m)
ℓ ,

and obtain θ̂bcℓ = θ̂ℓ − b̂iasℓ, the bias-correction for θ̂ℓ.

9: calculate

µ̃
bc
ℓ,1 =

1

|Hℓ|

∑

(i,j)∈Hℓ

ϕ̃(i,j,ℓ),1 and µ̃
bc
ℓ,2 =

1

|Hℓ|

∑

(i,j)∈Hℓ

ϕ̃(i,j,ℓ),2 ,

where ϕ̃(i,j,ℓ),1 and ϕ̃(i,j,ℓ),2 are defined in the same manner as ϕ̂(i,j,ℓ),1 and ϕ̂(i,j,ℓ),2, respectively, with

replacing {θ̂ℓ}
p
ℓ=1 by {θ̂bcℓ }

p
ℓ=1.

10: calculate ν̂bcℓ = (p− 2)b̂bcℓ +
ˆ̃
bbcℓ , where b̂bcℓ and

ˆ̃
bbcℓ are defined in the same manner of b̂ℓ and

ˆ̃
bℓ specified

as (A.6) in the Appendix with replacing (µ̂ℓ,1, µ̂ℓ,2,{θ̂k}
p
k=1) by (µ̃bcℓ,1, µ̃

bc
ℓ,2,{θ̂

bc
k }

p
k=1).

11: repeat

12: given δ > 0 and draw bootstrap samples Z† = (Z
†
i,j)p×p as in (4.2), calculate the bootstrap estimate θ̂

†
ℓ

defined in (4.4) based on the bootstrap samples Z†.

13: until M replicates obtained, for a large integer M , and get θ̂
†,(1)
ℓ , . . . , θ̂

†,(M)
ℓ .

14: calculate

ν̂
†
ℓ (δ) =

p2

M

M∑

m=1

{θ̂
†,(m)
ℓ −

¯̂
θ
†
ℓ}

2

with
¯̂
θ
†
ℓ =M−1∑M

m=1 θ̂
†,(m)
ℓ .

15: select

δ̂opt = argmin
δ>0

max
ℓ∈J

|ν̂
†
ℓ (δ)− ν̂

bc
ℓ | .

applied the data-driven Algorithm 1 with M = 500. Table 2 lists the relative frequencies, in

500 replications for each settings, of the occurrence of the event that the constructed confi-

dence region contains the true value of θ. At each of the three nominal levels, those relative

frequencies are always close to the corresponding nominal level.
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TABLE 1

Estimation errors of the proposed moment-based estimation and the maximum likelihood estimation for θ in the

β-model (3.1). Also reported are the average CPU times (in minutes) for completing the estimation once for

each of the two methods.

Proposed method Maximum likelihood estimation

p Summary statistics α= β = 0 α= β = 0.1 α= β = 0.2 α= β = 0.3 α= β = 0 α= β = 0.1 α= β = 0.2 α= β = 0.3

1000 Average 0.0041 0.0065 0.0117 0.0274 0.0062 0.0057 0.0107 0.0239

Median 0.0041 0.0065 0.0117 0.0274 0.0041 0.0057 0.0107 0.0239

Standard deviation 0.0002 0.0003 0.0006 0.0012 0.0085 0.0002 0.0005 0.0015

Time (min) 1.0340 1.0439 0.9191 0.8540 471.6290 850.2369 754.2811 780.9615

2000 Average 0.0020 0.0032 0.0058 0.0133 0.0058 NA NA NA

Median 0.0020 0.0032 0.0058 0.0133 0.0043 NA NA NA

Standard deviation 0.0001 0.0001 0.0002 0.0004 0.0019 NA NA NA

Time (min) 4.2333 4.8707 3.7540 3.7256 5095.0520 NA NA NA

TABLE 2

Empirical frequencies of the constructed simultaneous confidence regions for θ covering the truth in the

β-model (3.1).

p Level α= β = 0 α= β = 0.1 α= β = 0.2 α= β = 0.3

1000 90% 0.876 0.868 0.910 0.888

95% 0.932 0.928 0.958 0.948

99% 0.984 0.982 0.982 0.992

2000 90% 0.900 0.876 0.898 0.896

95% 0.950 0.956 0.946 0.952

99% 0.988 0.990 0.996 0.992

5.2. Real data analysis. Facebook, a social networking site launched in February 2004,

now overwhelms numerous aspects of everyday life, and has become an immensely popu-

lar societal obsession. The Facebook friendships define a network of undirected edges that

connect individual users. In this section, we analyze a small Facebook friendship network

dataset available at http://wwwlovre.appspot.com/support.jsp. The network

consists of 334 nodes and 2218 edges.

We fit the β-model to this network. As an illustration on the impact of the ‘jittering’, we

identify the nodes with the associated parameters equal to 0 based on both the original net-

work and some sanitized versions. More specifically, we first consider the multiple hypothesis

tests:

H0,ℓ : θℓ = 0 versus H1,ℓ : θℓ 6= 0

for 1 ≤ ℓ ≤ 334. The moment-based estimate θ̂ = (θ̂1, . . . , θ̂334)
⊤ based on the original

data X is calculated according to (3.8). Theorem 1 indicates that the p-value for the ℓ-

th test is given by 2{1 − Φ(
√
333b̂

−1/2
ℓ |θ̂ℓ|)} with b̂ℓ defined as (A.6) in the Appendix.

Note that θ̂ℓ1 and θ̂ℓ2 are asymptotically independent for any ℓ1 6= ℓ2. The BH procedure

(Benjamini et al., 1995) at the rate 1% for the 334 multiple tests identifies the 10 nodal param-

eters (θ2, θ21, θ33, θ51, θ78, θ186, θ202, θ211, θ263, θ272) being not significantly different from 0.

Put J = {2,21,33,51,78,186,202,211, 263,272}. We consider now the testing problem for

the single hypothesis setting

H0 : θJ = 0 versus H1 : θJ 6= 0(5.1)

based on both the original network X and its sanitized versions Z via jittering mechanism

(2.3) with α = β = 0.1,0.2 and 0.3. Let ζ1, . . . ,ζ1000 be independent and N (0, I10). By

http://wwwlovre.appspot.com/support.jsp
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Theorem 3, the p-value of the test for (5.1) based on Z is approximately

1

1000

1000∑

m=1

I{|ζm|∞ ≥
√
333× 332|V̂−1/2

J θ̂
(Z)
J |∞} ,

where θ̂
(Z)
J is the estimate of θJ based on Z by the moment-based method (3.8), and V̂J is

the estimate of the asymptotic covariance of
√
333× 332{θ̂(Z)

J −θJ }. When α= β = 0, Z=
X, the p-value for testing (5.1) based on X is then 0.1019. As the test based on Z depends on

a particular realization when α= β = 0.1, 0.2 and 0.3, we repeat the test 500 times for each

setting. The average p-values of those 500 tests (based on Z) with α= β = 0.1, 0.2 and 0.3
are, respectively, 0.1276, 0.1522 and 0.1874, which are reasonably close to the p-value based

on X. The standard errors of the 500 p-values are 0.0795, 0.1281 and 0.1408, respectively,

for α= β = 0.1,0.2 and 0.3.

This small illustration suggests that, with increasing edge noise (and hence increasing

privacy), the resulting p-value is increasingly over-estimated with increasing standard error.

Both trends are to be expected – since with increasing edge-noise the signal will be weakened

– and merit future study.

6. Extension to the sparse β-model. Under Condition 1 imposed on the β-model (3.1),

we have

min
i,j: i<j

P(Xi,j = 1)≥ exp(−c)
1 + exp(−c) ≍ 1

for some positive constant c, which implies the expected number of edges of the network

should be of order at least p2 and thus the network will be dense. In this last section we

illustrate how our results may be extended to the case of sparse networks, through several

additional results. A full generalization of our results for the dense case, inclusive of the

bootstrap-based inferential procedure, is beyond the present scope.

To model the sparse networks, Chen, Kato and Leng (2021) consider the sparse β-model

defined as

P(Xi,j = 1) =
exp(ξ + θ̌i + θ̌j)

1 + exp(ξ + θ̌i + θ̌j)
,(6.1)

where ξ ∈ R and θ̌ = (θ̌1, . . . , θ̌p)
⊤ ∈ R

p
+ are both unknown parameters with |θ̌|0 ≪ p

and minℓ∈[p] θ̌ℓ = 0. Denote by S the support of θ̌, that is S = {ℓ ∈ [p] : θ̌ℓ 6= 0}. Write

|S| = s. Given some constants ω1 ∈ [0,2) and ω2 ∈ [0,1) such that 0 ≤ ω1 − ω2 < 1,

Chen, Kato and Leng (2021) consider the reparametrization

ξ =−ω1 log p+ ξ+ and θ̌ℓ = ω2 log p+ θ̌+ℓ for all ℓ ∈ S ,
where |ξ+|= o(log p) and maxℓ∈S |θ̌+ℓ |= o(log p). Let

(6.2) θℓ =
ξ

2
+ θ̌ℓ , ℓ ∈ [p] .

The sparse β-model (6.1) can be reformulated as the standard β-model (3.1) with

|θ|∞




∼
∣∣∣∣
ω1

2
− ω2

∣∣∣∣ log p , if ω1 6= 2ω2 ,

= o(log p) , if ω1 = 2ω2 .
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Applying the estimation procedure given in Section 3.2 to the sanitized network Z =
(Zi,j)p×p defined as in (2.3)–(2.5), we can also obtain the moment-based estimator θ̂ℓ de-

fined as (3.8) for the unknown parameter θℓ given in (6.2). For the positive stochastic se-

quence {ap} and the positive sequence {cp}, we write ap = Õp(cp) if ap = Op(p
ǫcp) for

some sufficiently small fixed constant ǫ > 0. Proposition 5 gives the convergence rate of

maxℓ∈[p] |θ̂ℓ − θℓ| under the sparse β-model.

PROPOSITION 5. Let (α,β) ∈M(γ,C1) for some fixed constant C1 ∈ (0,0.5). Write

χp = exp(−|ξ+| ∨maxℓ∈S |θ̌+ℓ |). If 0≤ ω2 ≤ ω1 < 1/2, then

max
ℓ∈[p]
|θ̂ℓ− θℓ|= Õp

(
log1/2 p

γp1/2−ω1

)
+ Õp

(
s log1/2 p

γp3/2−ω1−ω2

)
+ Õp

(
log1/2 p

γ3p1−2ω1

)
.

provided that γ≫ χ−8
p (sp−3/2+ω1+ω2 log1/2 p+ p−1/3+2ω1/3 log1/6 p).

REMARK 4. Under the assumption |ξ+| ∨ maxℓ∈S |θ̌+ℓ | = o(log p), we know χ−1
p =

exp{o(log p)}. As shown in Section F of the supplementary material, there exists some uni-

versal positive constant c such that

max
ℓ∈[p]
|θ̂ℓ− θℓ|= χ−c

p ·
{
Op

(
log1/2 p

γp1/2−ω1

)
+Op

(
s log1/2 p

γp3/2−ω1−ω2

)
+Op

(
log1/2 p

γ3p1−2ω1

)}

provided that γ≫ χ−8
p (sp−3/2+ω1+ω2 log1/2 p+ p−1/3+2ω1/3 log1/6 p). If the network X is

dense with ω1 = 0, |ξ+| ≤ C and maxℓ∈S |θ̌+ℓ | ≤ C for some universal positive constant C ,

it follows from Proposition 5 that

max
ℓ∈[p]
|θ̂ℓ − θℓ|=Op

(
log1/2 p

γp1/2

)
+Op

(
log1/2 p

γ3p

)

provided that γ≫ p−1/3 log1/6 p, which is identical to the result in Proposition 3.

By (6.2) and s≪ p in the sparse β-model, we can estimate ξ and θ̌ℓ as follows:

(6.3) ξ̂ =
2

p

∑

ℓ∈[p]

θ̂ℓ and
ˆ̌θℓ = θ̂ℓ−

ξ̂

2
.

Due to | ˆ̌θℓ − θ̌ℓ| ≤ |θ̂ℓ− θℓ|+ |ξ̂ − ξ|/2 and

|ξ̂ − ξ|=
∣∣∣∣
2

p

∑

ℓ∈[p]

(θ̂ℓ − θℓ + θ̌ℓ)

∣∣∣∣≤ 2max
ℓ∈[p]
|θ̂ℓ− θℓ|+O

(
s logp

p

)
,

by Proposition 5, we have the following theorem.

THEOREM 4. Let (α,β) ∈M(γ,C1) for some fixed constant C1 ∈ (0,0.5). Write χp =
exp(−|ξ+| ∨maxℓ∈S |θ̌+ℓ |). If 0≤ ω2 ≤ ω1 < 1/2, then

|ξ̂ − ξ|= Õp

(
log1/2 p

γp1/2−ω1

)
+ Õp

(
s log1/2 p

γp3/2−ω1−ω2

)

+ Õp

(
log1/2 p

γ3p1−2ω1

)
+O

(
s log p

p

)
=max

ℓ∈[p]
| ˆ̌θℓ− θ̌ℓ|

provided that γ≫ χ−8
p (sp−3/2+ω1+ω2 log1/2 p+ p−1/3+2ω1/3 log1/6 p).
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REMARK 5. For known (ω1, ω2) and S , Theorem 1 of Chen, Kato and Leng (2021)

specifies the convergence rates of the MLE for ξ+ and {θ̌+ℓ }ℓ∈S based on the true net-

work X rather than the sanitized network Z (i.e., α = β = 0 in our setting). Denote

by ξ̃+ and
˜̌θ+ℓ , respectively, the MLE of ξ+ and θ̌+ℓ proposed in Chen, Kato and Leng

(2021). To simplify our comparison, we assume |ξ+| ∨ maxℓ∈S |θ̌+ℓ | = O(1). Under the

restriction s = O{p(1−ω2)/2−c} for some sufficiently small constant c > 0, Theorem 1(ii)

of Chen, Kato and Leng (2021) implies |ξ̃+ − ξ+| = Op(p
−1+ω1/2) and | ˜̌θ+ℓ − θ̌+ℓ | =

Op{p−1/2+(ω1−ω2)/2} for any ℓ ∈ S . With known (ω1, ω2), we can obtain the following

estimators for ξ+ and θ̌+ℓ based on ξ̂ and
ˆ̌θℓ given in (6.3):

ξ̂+ = ξ̂ + ω1 log p and
ˆ̌θ+ℓ = ˆ̌θℓ− ω2 log p .

Recall γ = 1 − α − β. By Theorem 4 with γ = 1 and s = O{p(1−ω2)/2−c} for some

sufficiently small constant c > 0, it holds that |ξ̂+ − ξ+| = Õp(p
−1/2+ω1 log1/2 p) and

maxℓ∈[p] |ˆ̌θ+ℓ − θ̌+ℓ |= Õp(p
−1/2+ω1 log1/2 p), which are slower than the convergence rates of

the MLE considered in Chen, Kato and Leng (2021). Their method cannot be implemented

directly with unknown (ω1, ω2) while our moment-based method can still work.

APPENDIX

A brief discussion of the fundamental issue of estimating asymptotic variances in Theorem

1 is provided here. If we know the decay rate of γ falls into which region, we may consider

to construct the confidence region of (θℓ1 , . . . , θℓs)
⊤ based on Theorem 1 with the plug-in

method. To do this, we need to estimate bℓk ’s and b̃ℓk ’s first. By (3.11), we can estimate λi,ℓ
by

(A.4) λ̂i,ℓ =
1

p− 2

∑

j: j 6=ℓ,i

{
1

µ̂ℓ,1
ϕ(ℓ,j),1ϕ(i,j),0 +

1

µ̂ℓ,2
ϕ(ℓ,j),0ϕ(i,j),1

}

with µ̂ℓ,1 and µ̂ℓ,2 specified in (3.9) and (3.10), respectively. By the definition of Zi,j , we

have

Var(Zi,j) =
α+ (1− β) exp(θi + θj)

1 + exp(θi + θj)
· 1−α+ β exp(θi + θj)

1 + exp(θi + θj)

for any i 6= j. We can estimate Var(Zi,j) by

(A.5) V̂ar(Zi,j) =
α+ (1− β) exp(θ̂i + θ̂j)

1 + exp(θ̂i + θ̂j)
· 1−α+ β exp(θ̂i + θ̂j)

1 + exp(θ̂i + θ̂j)
.

Based on (A.4) and (A.5), we can estimate bℓ and b̃ℓ, respectively, by

b̂ℓ =
1

p− 1

∑

i: i 6=ℓ

λ̂2i,ℓV̂ar(Zi,ℓ) ,(A.6)

ˆ̃bℓ =
1

2N

(
µ̂ℓ,1 + µ̂ℓ,2
µ̂ℓ,1µ̂ℓ,2

)2 ∑

i,j: i 6=j, i,j 6=ℓ

V̂ar(Zi,ℓ)V̂ar(Zℓ,j)V̂ar(Zi,j) .

The convergence rates of such estimates are presented in Proposition 6. The proof of Propo-

sition 6 is given in Section C of the supplementary material.
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PROPOSITION 6. Let Condition 1 hold and (α,β) ∈M(γ;C1) for some fixed constant

C1 ∈ (0,0.5). If γ≫ p−1/3 log1/6 p, for any given ℓ ∈ [p], it holds that

∣∣∣∣
b̂ℓ
bℓ
− 1

∣∣∣∣=Op

(
log p

γ4p

)
+Op

(
log1/2 p

γ2p1/2

)
,

∣∣∣∣
ˆ̃bℓ

b̃ℓ
− 1

∣∣∣∣=Op

(
log1/2 p

γ3p

)
+Op

(
log1/2 p

γp1/2

)
.

For any fixed integer s≥ 1, Theorem 1 and Proposition 6 imply that

p1/2diag(b̂
−1/2
ℓ1

, . . . , b̂
−1/2
ℓs

)(θ̂ℓ1 − θℓ1 , . . . , θ̂ℓs − θℓs)⊤→N (0, Is)

in distribution if γ≫ p−1/4 log1/4 p, and

pdiag(ˆ̃b
−1/2
ℓ1

, . . . , ˆ̃b
−1/2
ℓs

)(θ̂ℓ1 − θℓ1 , . . . , θ̂ℓs − θℓs)⊤→N (0, Is)

in distribution if p−1/3 log1/6 p≪ γ≪ p−1/4. Unfortunately, such plug-in method does not

work in the scenario p−1/4 . γ . p−1/4 log1/4 p since b̂ℓ is no longer a valid estimate for

bℓ. On the other hand, it is difficult to judge which regime the decay rate of γ falls into in

practice with finite samples. Hence, the plug-in method is powerless practically.
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Throughout the supplementary material, we use C and C̃ to denote generic positive finite

universal constants that may be different in different uses. The following two inequalities will

be used in our proofs.

INEQUALITY 1 (Decoupling inequality, Theorem 1 of de la Peña and Montgomery-Smith

(1995)). Let {Ui} be a sequence of independent random variables on a measurable space

(J , S) and let {U (j)
i }, j ∈ [k], be k independent copies of {Ui}. Let fi1,...,ik be families of

functions of k variables taking (S × · · · × S) into a Banach space (B,‖ · ‖). Then, for all

n≥ k ≥ 2 and t > 0, there exists a numerical constant Ck depending on k only so that

P

{∥∥∥∥
∑

1≤i1 6=···6=ik≤n

fi1,...,ik(U
(1)
i1
,U

(1)
i2
, . . . ,U

(1)
ik

)

∥∥∥∥≥ t
}

≤CkP

{
Ck

∥∥∥∥
∑

1≤i1 6=···6=ik≤n

fi1,...,ik(U
(1)
i1
,U

(2)
i2
, . . . ,U

(k)
ik

)

∥∥∥∥≥ t
}
.

INEQUALITY 2 (Theorem 3.3 of Giné, Latała and Zinn (2000)). There exists a universal

constant L> 0 such that, if hi,j are bounded canonical kernels of two variables for indepen-

dent random variables U
(1)
i and U

(2)
j , i, j ∈ [n], then

P

{∣∣∣∣
n∑

i,j=1

hi,j(U
(1)
i ,U

(2)
j )

∣∣∣∣≥ t
}
≤ L exp

{
− 1

L
min

(
t2

E2
,
t

D
,
t2/3

B2/3
,
t1/2

A1/2

)}

for all t > 0, where

A= max
i,j∈[n]

‖hi,j‖∞ , E2 =

n∑

i,j=1

E{h2i,j(U (1)
i ,U

(2)
j )} ,

B2 = max
i,j∈[n]

[∥∥∥∥
n∑

i=1

E1{h2i,j(U
(1)
i , y)}

∥∥∥∥
∞

,

∥∥∥∥
n∑

j=1

E2{h2i,j(x,U
(2)
j )}

∥∥∥∥
∞

]
,
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D = sup

[
E

{ n∑

i,j=1

hi,j(U
(1)
i ,U

(2)
j )fi(U

(1)
i )gj(U

(2)
i )

}
:

E

{ n∑

i=1

f2i (U
(1)
i )

}
≤ 1, E

{ n∑

j=1

g2j (U
(2)
j )

}
≤ 1

]
.

A. Proof of Proposition 3. Define

(S.A.1) ζ̂ℓ =
µ̂ℓ,1
µ̂ℓ,2

and ζℓ =
µℓ,1
µℓ,2

.

To prove Proposition 3, we need the following lemma whose proof is given in Section G.1.

LEMMA 1. Let Condition 1 hold and (α,β) ∈M(γ;C1) for some fixed constant C1 ∈
(0,0.5). Then

max
k∈{1,2}

max
ℓ∈[p]
|µ̂ℓ,k − µℓ,k|=Op

(
log1/2 p

p

)
+Op

(
γ2 log1/2 p

p1/2

)
+Op

(
γ log p

p

)
.

By Condition 1,

min
ℓ∈[p]

µℓ,1 ≍ γ3 ≍max
ℓ∈[p]

µℓ,2 .

If γ≫ p−1/3 log1/6 p, Lemma 1 implies

max
ℓ∈[p]
|µ̂ℓ,1 − µℓ,1|= op(γ

3) =max
ℓ∈[p]
|µ̂ℓ,2 − µℓ,2| .

By (S.A.1), it holds that

ζ̂ℓ − ζℓ =
µ̂ℓ,1 − µℓ,1

µ̂ℓ,2
− µℓ,1(µ̂ℓ,2 − µℓ,2)

µ̂ℓ,2µℓ,2

=
µ̂ℓ,1 − µℓ,1

µℓ,2
− µℓ,1
µ2ℓ,2

(µ̂ℓ,2 − µℓ,2) +Rℓ,1 ,

where maxℓ∈[p] |Rℓ,1|=Op(γ
−6p−2 log p) +Op(γ

−2p−1 log p). Thus,

max
ℓ∈[p]
|ζ̂ℓ − ζℓ|=Op

(
log1/2 p

γ3p

)
+Op

(
log1/2 p

γp1/2

)
= op(1) .

Since θℓ = log(ζℓ)/2 and θ̂ℓ = log(ζ̂ℓ)/2, by Taylor expansion, we have that

θ̂ℓ − θℓ =
1

2ζℓ
(ζ̂ℓ− ζℓ) +Rℓ,2 =

µ̂ℓ,1 − µℓ,1
2µℓ,1

− µ̂ℓ,2− µℓ,2
2µℓ,2

+Rℓ,3 ,(S.A.2)

where

max
ℓ∈[p]
|Rℓ,2|=Op

(
log p

γ6p2

)
+Op

(
log p

γ2p

)
=max

ℓ∈[p]
|Rℓ,3| .

Therefore,

max
ℓ∈[p]
|θ̂ℓ − θℓ|=Op

(
log1/2 p

γ3p

)
+Op

(
log1/2 p

γp1/2

)
= op(1) .

We complete the proof of Proposition 3. ✷
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B. Proof of Theorem 1. For any i, j, ℓ ∈ [p], let ψ1(i, j; ℓ) = ϕ(i,ℓ),1ϕ(i,j),0ϕ(ℓ,j),1 and

ψ2(i, j; ℓ) = ϕ(i,ℓ),0ϕ(i,j),1ϕ(ℓ,j),0. Note that γ≫ p−1/3 log1/6 p. Write N = (p − 1)(p − 2)
and ϕ̊(i,j),τ = ϕ(i,j),τ − E{ϕ(i,j),τ}. As shown in Section G.1 for the proof of Lemma 1,

µ̂ℓ,1− µℓ,1 =
1

|Hℓ|
∑

(i,j)∈Hℓ

[ψ1(i, j; ℓ)−E{ψ1(i, j; ℓ) |Fℓ}]

︸ ︷︷ ︸
Iℓ,1,1

+
2

N

∑

i,j: i 6=j, i,j 6=ℓ

ϕ̊(i,ℓ),1E{ϕ(ℓ,j),1}E{ϕ(i,j),0}
︸ ︷︷ ︸

N−1Iℓ,1,2(1)

+
1

N

∑

i,j: i 6=j, i,j 6=ℓ

ϕ̊(i,ℓ),1ϕ̊(ℓ,j),1E{ϕ(i,j),0}
︸ ︷︷ ︸

N−1Iℓ,1,2(2)

,

µ̂ℓ,2− µℓ,2 =
1

|Hℓ|
∑

(i,j)∈Hℓ

[ψ2(i, j; ℓ)−E{ψ2(i, j; ℓ) |Fℓ}]

︸ ︷︷ ︸
Iℓ,2,1

+
2

N

∑

i,j: i 6=j, i,j 6=ℓ

ϕ̊(i,ℓ),0E{ϕ(ℓ,j),0}E{ϕ(i,j),1}
︸ ︷︷ ︸

N−1Iℓ,2,2(1)

+
1

N

∑

i,j: i 6=j, i,j 6=ℓ

ϕ̊(i,ℓ),0ϕ̊(ℓ,j),0E{ϕ(i,j),1}
︸ ︷︷ ︸

N−1Iℓ,2,2(2)

,

where Fℓ = {Zi,ℓ,Zℓ,j : (i, j) ∈ Hℓ}. For each given ℓ ∈ [p], following the proof of Lemma

1 in Section G.1, we know that Iℓ,1,1 =Op(p
−1) = Iℓ,2,1, Iℓ,1,2(1) =Op(γ

2p3/2) = Iℓ,2,2(1)
and Iℓ,1,2(2) =Op(γp) = Iℓ,2,2(2). Also, the remainder term Rℓ,3 in (S.A.2) satisfies Rℓ,3 =
Op(γ

−6p−2) +Op(γ
−2p−1) for each given ℓ ∈ [p]. By (S.A.2), we have

θ̂ℓ− θℓ =
Iℓ,1,1
2µℓ,1

− Iℓ,2,1
2µℓ,2︸ ︷︷ ︸

Tℓ,1

+
Iℓ,1,2(1)

2µℓ,1N
− Iℓ,2,2(1)

2µℓ,2N︸ ︷︷ ︸
Tℓ,2

+Rℓ,4 ,(S.B.1)

where Rℓ,4 =Op(γ
−6p−2) +Op(γ

−2p−1). Write Z̊i,j = Zi,j −E(Zi,j). Then ϕ̊(i,j),1 = Z̊i,j

and ϕ̊(i,j),0 =−Z̊i,j . It holds that

Tℓ,1 =−
1

N

∑

i,j: i 6=j, i,j 6=ℓ

{
ϕ(i,ℓ),1ϕ(ℓ,j),1

2µℓ,1
+
ϕ(i,ℓ),0ϕ(ℓ,j),0

2µℓ,2

}
Z̊i,j ,(S.B.2)

Tℓ,2 =
1

p− 1

∑

i: i 6=ℓ

λi,ℓZ̊i,ℓ ,(S.B.3)

where λi,ℓ is defined as (3.11). In Sections B.1–B.3, we will prove Theorem 1(a)–1(c) based

on (S.B.1)–(S.B.3), respectively.
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B.1. Case 1: γ≫ p−1/4. Due to Tℓ,1 =Op(γ
−3p−1), by (S.B.1) and (S.B.3),

θ̂ℓ− θℓ = Tℓ,2 +Rℓ,5 =
1

p− 1

∑

i: i 6=ℓ

λi,ℓZ̊i,ℓ +Rℓ,5 ,

where Rℓ,5 = Op(γ
−3p−1). Write λ∗i,ℓ = γλi,ℓ. Under Condition 1, minℓ∈[p]mini: i 6=ℓ λ

∗
i,ℓ ≍

1≍maxℓ∈[p]maxi: i 6=ℓ λ
∗
i,ℓ. Then

γ(θ̂ℓ − θℓ) =
1

p− 1

∑

i: i 6=ℓ

λ∗i,ℓZ̊i,ℓ +Rℓ,6

with Rℓ,6 =Op(γ
−2p−1). Given s different ℓ1, . . . , ℓs ∈ [p], we define an s-dimensional vec-

tor wi = (Wi,1, . . . ,Wi,s)
⊤ with Wi,j = λ∗i,ℓj Z̊i,ℓj . Then it holds that

γ(θ̂ℓ1 − θℓ1 , . . . , θ̂ℓs − θℓs)⊤ =
1

p− 1

∑

i: i 6=ℓ1,...,ℓs

wi + r(S.B.4)

with |r|∞ =Op(γ
−2p−1). Let bℓ,∗ = (p− 1)−1

∑
i: i 6=ℓ λ

∗,2
i,ℓ Var(Zi,ℓ). Notice that

1

p− 1

∑

i: i 6=ℓ1,...,ℓs

Var(wi) = diag(bℓ1,∗, . . . , bℓs,∗) +O(p−1) ,

and {wi}i 6=ℓ1,...,ℓs is an independent sequence. By the Central Limit Theorem,

(p− 1)1/2γ diag(b
−1/2
ℓ1,∗

, . . . , b
−1/2
ℓs,∗

)(θ̂ℓs − θℓ1 , . . . , θ̂ℓs − θℓs)⊤
d−→N (0, Is) .

Due to bℓ,∗ = γ2bℓ, we complete the proof of Theorem 1(a). ✷

B.2. Case 2: p−1/4≫ γ≫ p−1/3 log1/6 p. Due to Tℓ,2 =Op(γ
−1p−1/2), by (S.B.1),

θ̂ℓ− θℓ = Tℓ,1 +Rℓ,7(S.B.5)

with Rℓ,7 = Op(γ
−6p−2) + Op(γ

−1p−1/2). Recall ϕ̊(i,j),1 = Z̊i,j and ϕ̊(i,j),0 = −Z̊i,j . By

(S.B.2), we have

Tℓ,1 =−
1

N

∑

i,j: i 6=j, i,j 6=ℓ

(
1

2µℓ,1
+

1

2µℓ,2

)
Z̊i,ℓZ̊ℓ,jZ̊i,j

− 2

N

∑

i,j: i 6=j, i,j 6=ℓ

[
E{ϕ(ℓ,j),1}

2µℓ,1
−

E{ϕ(ℓ,j),0}
2µℓ,2

]
Z̊i,ℓZ̊i,j

︸ ︷︷ ︸
Jℓ,1

(S.B.6)

− 1

N

∑

i,j: i 6=j, i,j 6=ℓ

[
E{ϕ(i,ℓ),1}E{ϕ(ℓ,j),1}

2µℓ,1
+

E{ϕ(i,ℓ),0}E{ϕ(ℓ,j),0}
2µℓ,2

]
Z̊i,j

︸ ︷︷ ︸
Jℓ,2

.

Due to Z̊i,j = Z̊j,i and E{ϕ(i,j),τ}= E{ϕ(j,i),τ}, we have

Jℓ,2 =
1

|Hℓ|
∑

(i,j)∈Hℓ

[
E{ϕ(i,ℓ),1}E{ϕ(ℓ,j),1}

2µℓ,1
+

E{ϕ(i,ℓ),0}E{ϕ(ℓ,j),0}
2µℓ,2

]
Z̊i,j .



SUPPLEMENT TO “EDGE DIFFERENTIALLY PRIVATE ESTIMATION” S5

Under Condition 1,

min
ℓ∈[p]

min
i,j: i 6=j, i,j 6=ℓ

[
E{ϕ(i,ℓ),1}E{ϕ(ℓ,j),1}

2µℓ,1
+

E{ϕ(i,ℓ),0}E{ϕ(ℓ,j),0}
2µℓ,2

]

≍ γ−1 ≍max
ℓ∈[p]

max
i,j: i 6=j, i,j 6=ℓ

[
E{ϕ(i,ℓ),1}E{ϕ(ℓ,j),1}

2µℓ,1
+

E{ϕ(i,ℓ),0}E{ϕ(ℓ,j),0}
2µℓ,2

]
.

Notice that {Z̊i,j}(i,j)∈Hℓ
is an independent sequence with |Hℓ| = (p − 1)(p − 2)/2. By

Bernstein inequality, we have

(S.B.7) |Jℓ,2|=Op(γ
−1p−1) .

For Jℓ,1, we can reformulate it as follows:

Jℓ,1 =
1

p− 1

∑

i: i 6=ℓ

Z̊i,ℓ

[
1

p− 2

∑

j: j 6=i,ℓ

E{ϕ(ℓ,j),1}
µℓ,1

Z̊i,j

]

︸ ︷︷ ︸
Jℓ,1(1)

− 1

p− 1

∑

i: i 6=ℓ

Z̊i,ℓ

[
1

p− 2

∑

j: j 6=i,ℓ

E{ϕ(ℓ,j),0}
µℓ,2

Z̊i,j

]

︸ ︷︷ ︸
Jℓ,1(2)

.(S.B.8)

Let Ãi,ℓ = (p− 2)−1
∑

j: j 6=i,ℓE{ϕ(ℓ,j),1}µ−1
ℓ,1 Z̊i,j . Due to

min
ℓ∈[p]

min
j: j 6=ℓ

E{ϕ(ℓ,j),1}
µℓ,1

≍ γ−2 ≍max
ℓ∈[p]

max
j: j 6=ℓ

E{ϕ(ℓ,j),1}
µℓ,1

under Condition 1, by Bernstein inequality,

(S.B.9) P(|Ãi,ℓ|> u). exp(−Cγ4pu2)
for any u= o(1). Given a sufficiently large constant C∗ > 0, define

Eℓ(C∗) =

{
max
i: i 6=ℓ
|Ãi,ℓ| ≤

C∗ log
1/2 p

γ2p1/2

}
.

By (S.B.9), we have

P{|Jℓ,1(1)|> u} ≤ P

{∣∣∣∣
1

p− 1

∑

i: i 6=ℓ

Z̊i,ℓÃi,ℓ

∣∣∣∣> u ,Eℓ(C∗)

}
+ p−C̄ .(S.B.10)

The constant C̄ > 0 in (S.B.10) can be sufficiently large if we select a sufficiently large

constant C∗. Write F−ℓ = {Zi,j : i, j 6= ℓ}. Conditional on F−ℓ, by Bernstein inequality,

P

{∣∣∣∣
1

p− 1

∑

i: i 6=ℓ

Z̊i,ℓÃi,ℓ

∣∣∣∣> u ,Eℓ(C∗)

∣∣∣∣F−ℓ

}

. exp

(
− Cp2u2

C̃
∑

i: i 6=ℓ Ã
2
i,ℓ + pumaxi: i 6=ℓ |Ãi,ℓ|

)
I

(
max
i: i 6=ℓ
|Ãi,ℓ| ≤

C∗ log
1/2 p

γ2p1/2

)

for any u > 0. Selecting u=C∗∗γ
−2p−1 log p, we have

P

{∣∣∣∣
1

p− 1

∑

i: i 6=ℓ

Z̊i,ℓÃi,ℓ

∣∣∣∣>
C∗∗ log p

γ2p
,Eℓ(C∗)

∣∣∣∣F−ℓ

}

. p−Č · I
(
max
i: i 6=ℓ
|Ãi,ℓ| ≤

C∗ log
1/2 p

γ2p1/2

)
≤ p−Č ,
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which implies

P

{∣∣∣∣
1

p− 1

∑

i: i 6=ℓ

Z̊i,ℓÃi,ℓ

∣∣∣∣>
C∗∗ log p

γ2p
,Eℓ(C∗)

}
. p−Č → 0 .

Here the constant Č > 0 can be sufficiently large if we select a sufficiently large constant

C∗∗. Thus, (S.B.10) implies maxℓ∈[p] |Jℓ,1(1)| = Op(γ
−2p−1 log p). Analogously, we also

have maxℓ∈[p] |Jℓ,1(2)|=Op(γ
−2p−1 log p). By (S.B.8),

max
ℓ∈[p]
|Jℓ,1|=Op(γ

−2p−1 log p) .(S.B.11)

Together with (S.B.7), by (S.B.5) and (S.B.6), we have

θ̂ℓ− θℓ =−
1

N

∑

i,j: i 6=j, i,j 6=ℓ

(
1

2µℓ,1
+

1

2µℓ,2

)
Z̊i,ℓZ̊ℓ,jZ̊i,j +Rℓ,8

with Rℓ,8 =Op(γ
−6p−2) +Op(γ

−1p−1/2), which implies

− 2µℓ,1µℓ,2
µℓ,1 + µℓ,2

(θ̂ℓ − θℓ) =
1

N

∑

i,j: i 6=j, i,j 6=ℓ

Z̊i,ℓZ̊ℓ,jZ̊i,j

︸ ︷︷ ︸
∆ℓ

+Rℓ,9(S.B.12)

with Rℓ,9 =Op(γ
−3p−2) +Op(γ

2p−1/2).

In the sequel, we will specify the limiting distribution of
√
N(∆ℓ1 , . . . ,∆ℓs) for given s

different ℓ1, . . . , ℓs ∈ [p]. For given k ∈ [s], we have

∆ℓk =
1

N

∑

i,j: i6=j,

i,j 6=ℓ1,...,ℓs

Z̊i,ℓkZ̊ℓk,jZ̊i,j

︸ ︷︷ ︸
Mℓk,1

+
1

N

∑

i,j: i6=j, i,j 6=ℓk,

{i,j}∩{ℓ1,...,ℓk−1,ℓk+1,...,ℓs}6=∅

Z̊i,ℓkZ̊ℓk,jZ̊i,j

︸ ︷︷ ︸
Mℓk,2

.

(S.B.13)

Notice that

Mℓk,2 =
2

N

∑

k′:k′ 6=k

∑

i: i 6=ℓ1,...,ℓs

Z̊i,ℓkZ̊ℓk,ℓk′ Z̊i,ℓk′

+
1

N

∑

k′,k′′:k′ 6=k′′, k′,k′′ 6=k

Z̊ℓk′ ,ℓkZ̊ℓk,ℓk′′ Z̊ℓk′ ,ℓk′′ .

Since maxk∈[s]maxk′,k′′:k′ 6=k′′, k′,k′′ 6=k |Z̊ℓk′ ,ℓkZ̊ℓk,ℓk′′ Z̊ℓk′ ,ℓk′′ |. 1, it holds that

Mℓk,2 = 2
∑

k′:k′ 6=k

Z̊ℓk,ℓk′

(
1

N

∑

i: i 6=ℓ1,...,ℓs

Z̊i,ℓkZ̊i,ℓk′

)
+Rℓk,10

with Rℓk,10 =O(p−2). For given k′ such that k′ 6= k, since {Z̊i,ℓk Z̊i,ℓk′}i 6=ℓ1,...,ℓs is an inde-

pendent sequence, by Bernstein inequality, we have

P

(
1

p− s

∣∣∣∣
∑

i: i 6=ℓ1,...,ℓs

Z̊i,ℓkZ̊i,ℓk′

∣∣∣∣> u

)
. exp(−Cpu2)

for any u= o(1). Therefore, it holds that

max
k′,k:k′ 6=k

∣∣∣∣
1

N

∑

i: i 6=ℓ1,...,ℓs

Z̊i,ℓkZ̊i,ℓk′

∣∣∣∣=Op(p
−3/2) ,
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which implies Mℓk,2 =Op(p
−3/2). By (S.B.13),

∆ℓk =Mℓk,1 +Rℓk,11(S.B.14)

with Rℓk,11 =Op(p
−3/2). Given ℓ1, . . . , ℓs, write

bℓk,∗∗ =
1

N

∑

i,j: i6=j,

i,j 6=ℓ1,...,ℓs

Var(Zi,ℓk)Var(Zℓk,j)Var(Zi,j) ,(S.B.15)

f(t1, . . . , ts) =E

{
exp

(
ι
√
N

s∑

k=1

tkb
−1/2
ℓk,∗∗

Mℓk,1

)}
with ι2 =−1 .

Let F∗
ℓ1,...,ℓs

= ∪sk=1{Zi,ℓk ,Zℓk,j : i, j 6= ℓk}. Then

E

{
exp

(
ι
√
N

s∑

k=1

tkb
−1/2
ℓk,∗∗

Mℓk,1

)∣∣∣∣F∗
ℓ1,...,ℓs

}
(S.B.16)

= E

[
exp

{ ∑

i,j: i<j,

i,j 6=ℓ1,...,ℓs

ι

( s∑

k=1

2tkb
−1/2
ℓk,∗∗√
N

Z̊i,ℓkZ̊ℓk,j

)
Z̊i,j

}∣∣∣∣F∗
ℓ1,...,ℓs

]
(S.B.17)

=
∏

i,j: i<j,

i,j 6=ℓ1,...,ℓs

E

[
exp

{
ι

( s∑

k=1

2tkb
−1/2
ℓk,∗∗√
N

Z̊i,ℓkZ̊ℓk,j

)
Z̊i,j

}∣∣∣∣F∗
ℓ1,...,ℓs

]
.(S.B.18)

Write Āi,j = (
∑s

k=1 2tkb
−1/2
ℓk,∗∗

N−1/2Z̊i,ℓkZ̊ℓk,j)Z̊i,j . By Taylor expansion,

exp(ιĀi,j) = 1+ ιĀi,j −
1

2
Ā2

i,j + R̃i,j

with |R̃i,j | ≤CN−3/2(|t1|+ · · ·+ |ts|)3, which implies

E{exp(ιĀi,j)|F∗
ℓ1,...,ℓs}=1− 1

2

( s∑

k=1

2tkb
−1/2
ℓk,∗∗√
N

Z̊i,ℓkZ̊ℓk,j

)2

Var(Zi,j) + R̃∗
i,j

with |R̃∗
i,j | ≤CN−3/2(|t1|+ · · ·+ |ts|)3 for any i, j 6= ℓ1, . . . , ℓk. Due to the fact |∏m

k=1 zk−∏m
k=1wk| ≤

∑m
k=1 |zk −wk| for any zk,wk ∈C with |zk| ≤ 1 and |wk| ≤ 1, we have

∣∣∣∣E
{
exp

(
ι
√
N

s∑

k=1

tkb
−1/2
ℓk,∗∗

Mℓk,1

)∣∣∣∣F∗
ℓ1,...,ℓs

}

−
∏

i,j: i<j,

i,j 6=ℓ1,...,ℓs

{
1− 1

2

( s∑

k=1

2tkb
−1/2
ℓk,∗∗√
N

Z̊i,ℓkZ̊ℓk,j

)2

Var(Zi,j)

}∣∣∣∣.
(|t1|+ · · ·+ |ts|)3√

N
.

It also holds that

∣∣∣∣
∏

i,j: i<j,

i,j 6=ℓ1,...,ℓs

exp

{
− 1

2

( s∑

k=1

2tkb
−1/2
ℓk,∗∗√
N

Z̊i,ℓkZ̊ℓk,j

)2

Var(Zi,j)

}

−
∏

i,j: i<j,

i,j 6=ℓ1,...,ℓs

{
1− 1

2

( s∑

k=1

2tkb
−1/2
ℓk,∗∗√
N

Z̊i,ℓkZ̊ℓk,j

)2

Var(Zi,j)

}∣∣∣∣.
(|t1|+ · · ·+ |ts|)4

N
.
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By Triangle inequality,

∣∣∣∣ exp
{
− 1

2

∑

i,j: i<j,

i,j 6=ℓ1,...,ℓs

( s∑

k=1

2tkb
−1/2
ℓk,∗∗√
N

Z̊i,ℓkZ̊ℓk,j

)2

Var(Zi,j)

}

− E

{
exp

(
ι
√
N

s∑

k=1

tkb
−1/2
ℓk,∗∗

Mℓk,1

)∣∣∣∣F∗
ℓ1,...,ℓs

}∣∣∣∣

.
(|t1|+ · · ·+ |ts|)3√

N
+

(|t1|+ · · ·+ |ts|)4
N

.(S.B.19)

Define

Q=
∑

i,j: i6=j,

i,j 6=ℓ1,...,ℓs

( s∑

k=1

tkb
−1/2
ℓk,∗∗√
N

Z̊i,ℓkZ̊ℓk,j

)2

Var(Zi,j)−
s∑

k=1

t2k .

By (S.B.19), we have

f(t1, . . . , ts) =E

[
E

{
exp

(
ι
√
N

s∑

k=1

tkb
−1/2
ℓk,∗∗

Mℓk,1

)∣∣∣∣F∗
ℓ1,...,ℓs

}]

= exp

(
−

s∑

k=1

t2k

)
E{exp(−Q)}+R(t1, . . . , ts)(S.B.20)

with |R(t1, . . . , ts)|.N−1/2(|t1|+ · · ·+ |ts|)3 +N−1(|t1|+ · · ·+ |ts|)4. Note that

Q=

s∑

k=1

2t2k
Nbℓk,∗∗

∑

i: i 6=ℓ1,...,ℓs

{Z̊2
i,ℓk − E(Z̊2

i,ℓk)}
{ ∑

j: j 6=i,ℓ1,...,ℓs

E(Z̊2
ℓk,j)Var(Zi,j)

}

+

s∑

k=1

t2k
Nbℓk,∗∗

∑

i,j: i6=j,

i,j 6=ℓ1,...,ℓs

{Z̊2
i,ℓk − E(Z̊2

i,ℓk)}{Z̊2
ℓk,j −E(Z̊2

ℓk,j)}Var(Zi,j)

+
∑

k,k′:k 6=k′

tktk′

Nb
1/2
ℓk,∗∗

b
1/2
ℓk′ ,∗∗

∑

i,j: i6=j,

i,j 6=ℓ1,...,ℓs

Z̊i,ℓkZ̊i,ℓk′ Z̊ℓk,jZ̊ℓk′ ,jVar(Zi,j) .

Recall

min
i: i 6=ℓ1,...,ℓs

∑

j: j 6=i,ℓ1,...,ℓs

E(Z̊2
ℓk,j)Var(Zi,j)≍ p≍ max

i: i 6=ℓ1,...,ℓs

∑

j: j 6=i,ℓ1,...,ℓs

E(Z̊2
ℓk,j)Var(Zi,j) .

By Bernstein inequality,

P

[∣∣∣∣
1

N

∑

i: i 6=ℓ1,...,ℓs

{Z̊2
i,ℓk −E(Z̊2

i,ℓk)}
{ ∑

j: j 6=i,ℓ1,...,ℓs

E(Z̊2
ℓk,j)Var(Zi,j)

}∣∣∣∣> u

]
. exp(−Cpu2)

for any u→ 0. By the decoupling inequality of de la Peña and Montgomery-Smith (1995)

and Theorem 3.3 of Giné, Latała and Zinn (2000), for any u→ 0 but pu→∞,

P

[∣∣∣∣
1

N

∑

i,j: i6=j,

i,j 6=ℓ1,...,ℓs

{Z̊2
i,ℓk −E(Z̊2

i,ℓk)}{Z̊2
ℓk ,j −E(Z̊2

ℓk,j)}Var(Zi,j)

∣∣∣∣> u

]
. exp(−Cpu) ,

P

{∣∣∣∣
1

N

∑

i,j: i6=j,

i,j 6=ℓ1,...,ℓs

Z̊i,ℓkZ̊i,ℓk′ Z̊ℓk,jZ̊ℓk′ ,jVar(Zi,j)

∣∣∣∣>u

}
. exp(−Cpu)
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with k 6= k′, which implies

P{|Q|> (|t1|+ · · ·+ |ts|)2u}. exp(−Cpu2)(S.B.21)

for any u→ 0 but pu→∞. For a sufficiently large constant C∗ > 0, define

E =
{
|Q| ≤ C∗ log

1/2 p

p1/2

}
.

For given (t1, . . . , ts), we have P(Ec)→ 0 as p→∞. By (S.B.20),

f(t1, . . . , ts) = exp

(
−

s∑

k=1

t2k

)[
E{exp(−Q)I(E)}+E{exp(−Q)I(Ec)}

]

+R(t1, . . . , ts) .

Notice that Q+
∑s

k=1 t
2
k ≥ 0. For given (t1, . . . , ts), as p→∞, due to the facts

R(t1, . . . , ts)→ 0 , 0≤ E

{
exp

(
−Q−

s∑

k=1

t2k

)
I(Ec)

}
≤ P(Ec)→ 0 ,

1← exp

(
− C∗ log

1/2 p

p1/2

)
P(E)≤ E{exp(−Q)I(E)} ≤ exp

(
C∗ log

1/2 p

p1/2

)
P(E)→ 1 ,

we have f(t1, . . . , ts)→ exp(−∑s
k=1 t

2
k), which implies

√
N(b

−1/2
ℓ1,∗∗

Mℓ1,1, . . . , b
−1/2
ℓs,∗∗

Mℓs,1)
⊤ d−→N (0,2Is) .

For b̃ℓk specified in (3.13), since
√
2µℓk,1µℓk,2b

−1/2
ℓk,∗∗

(µℓk,1 + µℓk,2)
−1b̃

1/2
ℓk
→ 1, then

√
Ndiag(b̃

−1/2
ℓ1

, . . . , b̃
−1/2
ℓs

)

{
(µℓ1,1 + µℓ1,2)Mℓ1,1√

2µℓ1,1µℓ1,2
, . . . ,

(µℓs,1 + µℓs,2)Mℓs,1√
2µℓs,1µℓs,2

}
⊤

d−→N (0,2Is) .

Together with (S.B.12) and (S.B.14), we complete the proof of Theorem 1(b). ✷

B.3. Case 3: γ ≍ p−1/4. For Tℓ,1 defined as (S.B.2), as shown in Section B.2,

Tℓ,1 =−
1

N

∑

i,j: i 6=j, i,j 6=ℓ

(
1

2µℓ,1
+

1

2µℓ,2

)
Z̊i,ℓZ̊ℓ,jZ̊i,j +Op

(
log p

p1/2

)

when γ ≍ p−1/4. By (S.B.1) and (S.B.3), we have

θ̂ℓ − θℓ =
1

p− 1

∑

i: i 6=ℓ

λi,ℓZ̊i,ℓ−
1

N

∑

i,j: i 6=j, i,j 6=ℓ

(
1

2µℓ,1
+

1

2µℓ,2

)
Z̊i,ℓZ̊ℓ,jZ̊i,j +Rℓ,12

with Rℓ,12 =Op(p
−1/2 log p), where λi,ℓ is defined as (3.11). Define

λ̃i,ℓ =
2λi,ℓµℓ,1µℓ,2
µℓ,1 + µℓ,2

.

Then

− 2µℓ,1µℓ,2
µℓ,1 + µℓ,2

(θ̂ℓ − θℓ) =−
1

p− 1

∑

i: i 6=ℓ

λ̃i,ℓZ̊i,ℓ +
1

N

∑

i,j: i 6=j, i,j 6=ℓ

Z̊i,ℓZ̊ℓ,jZ̊i,j +Rℓ,13
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with Rℓ,13 =Op(p
−5/4 log p). Given s different ℓ1, . . . , ℓs, as shown in Section B.2,

1

N

∑

i,j: i 6=j, i,j 6=ℓk

Z̊i,ℓkZ̊ℓk,jZ̊i,j =Mℓk,1 +Op

(
1

p3/2

)
,

where Mℓk,1 is specified in (S.B.13). We also have

− 1

p− 1

∑

i: i 6=ℓk

λ̃i,ℓkZ̊i,ℓk =−
1

p− 1

∑

i: i 6=ℓ1,...,ℓs

λ̃i,ℓkZ̊i,ℓk +O

(
1

p3/2

)

=:M∗
ℓk,1 +O

(
1

p3/2

)
.

Then

− 2µℓk,1µℓk,2
µℓk,1 + µℓk,2

(θ̂ℓk − θℓk) =Mℓk,1 +M∗
ℓk,1 +Op

(
log p

p5/4

)
.

For any k ∈ [s], write

bℓk,∗∗∗ = 2

(
µℓk,1µℓk,2
µℓk,1 + µℓk,2

)2

(p− 2)bℓk ,(S.B.22)

where bℓk is defined in (3.12). Write b̌ℓk = bℓk,∗∗ + bℓk,∗∗∗ with bℓk,∗∗ specified in (S.B.15).

Let

f̌(t1, . . . , ts) = E

[
exp

{
ι
√
N

s∑

k=1

tk b̌
−1/2
ℓk

(Mℓk,1 +M∗
ℓk,1)

}]
with ι2 =−1 .

Recall F∗
ℓ1,...,ℓs

= ∪sk=1{Zi,ℓk ,Zℓk,j : i, j 6= ℓk}. Same as (S.B.19),

∣∣∣∣ exp
{
− 1

2

∑

i,j: i<j,

i,j 6=ℓ1,...,ℓs

( s∑

k=1

2tk b̌
−1/2
ℓk√
N

Z̊i,ℓkZ̊ℓk,j

)2

Var(Zi,j)

}
−

−E

{
exp

(
ι
√
N

s∑

k=1

tk b̌
−1/2
ℓk

Mℓk,1

)∣∣∣∣F∗
ℓ1,...,ℓs

}∣∣∣∣

.
(|t1|+ · · ·+ |ts|)3√

N
+

(|t1|+ · · ·+ |ts|)4
N

,

which implies

f̌(t1, . . . , ts) = E

[
exp

{
−

∑

i,j: i6=j,

i,j 6=ℓ1,...,ℓs

( s∑

k=1

tkb̌
−1/2
ℓk√
N

Z̊i,ℓkZ̊ℓk,j

)2

Var(Zi,j)

}

× exp

(
ι
√
N

s∑

k=1

tk b̌
−1/2
ℓk

M∗
ℓk,1

)]
+O(N−1/2)(S.B.23)

for any given (t1, . . . , ts). Define

Q̃=
∑

i,j: i6=j,

i,j 6=ℓ1,...,ℓs

( s∑

k=1

tkb̌
−1/2
ℓk√
N

Z̊i,ℓkZ̊ℓk,j

)2

Var(Zi,j)−
s∑

k=1

t2kbℓk,∗∗

b̌ℓk
.
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Same as (S.B.21), we have

P{|Q̃|> (|t1|+ · · ·+ |ts|)2u2}. exp(−Cpu2)

for any u→ 0 but pu→∞. For a sufficiently large constant C∗ > 0, define Ẽ = {|Q̃| ≤
C∗p

−1/2 log1/2 p}. Then P(Ẽc)→ 0 as p→∞. By (S.B.23),

f̌(t1, . . . , ts) = E

{
exp

(
ι
√
N

s∑

k=1

tk b̌
−1/2
ℓk

M∗
ℓk,1

)
exp(−Q̃)I(Ẽ)

}

× exp

(
−

s∑

k=1

t2kbℓk,∗∗

b̌ℓk

)
+ o(1) .

Note that

(M∗
ℓ1,1, . . . ,M

∗
ℓs,1)

⊤ =−1

γ
· diag

(
2µℓ1,1µℓ1,2
µℓ1,1 + µℓ1,2

, . . . ,
2µℓs,1µℓs,2
µℓs,1 + µℓs,2

)
· 1

p− 1

∑

i: i 6=ℓ1,...,ℓs

wi

for wi specified in (S.B.4). As shown in Section B.1,

(p− 1)−1/2diag(b
−1/2
ℓ1,∗

, . . . , b
−1/2
ℓs,∗

)
∑

i: i 6=ℓ1,...,ℓs

wi
d−→N (0, Is) .

For bℓk,∗∗∗ defined as (S.B.22), due to bℓk,∗ = γ2bℓk , then

√
Ndiag

(
b
−1/2
ℓ1,∗∗∗√

2
, . . . ,

b
−1/2
ℓk,∗∗∗√

2

)
(M∗

ℓ1,1, . . . ,M
∗
ℓs,1)

⊤ d−→N (0, Is) .

Notice that b̌ℓk = bℓk,∗∗ + bℓk,∗∗∗. By the Dominated Convergence Theorem, f̌(t1, . . . , ts)→
exp(−∑s

k=1 t
2
k) for any given (t1, . . . , ts), which implies

√
Ndiag

{ √
2µℓ1,1µℓ1,2

(µℓ1,1 + µℓ1,2)b̌
1/2
ℓ1

, . . . ,

√
2µℓs,1µℓs,2

(µℓs,1 + µℓs,2)b̌
1/2
ℓs

}
(θ̂ℓ1 − θℓ1 , . . . , θ̂ℓs − θℓs)⊤

d−→N (0, Is) .

Due to bℓk ≍
√
p, b̃ℓk ≍ p3/2 and

(µℓk,1 + µℓk,2)
2b̌ℓk

2µ2ℓk,1µ
2
ℓk,2

=
(µℓk,1 + µℓk,2)

2bℓk,∗∗∗
2µ2ℓk,1µ

2
ℓk,2

+
(µℓk,1 + µℓk,2)

2bℓk,∗∗
2µ2ℓk,1µ

2
ℓk,2

= (p− 2)bℓk +
(µℓk,1 + µℓk,2)

2

2Nµ2ℓk,1µ
2
ℓk,2

∑

i,j: i6=j,

i,j 6=ℓ1,...,ℓs

Var(Zi,ℓk)Var(Zℓk,j)Var(Zi,j)

= (p− 2)bℓk + b̃ℓk +O(
√
p) ,

then
√
2µℓk,1µℓk,2

(µℓk,1 + µℓk,2)b̌
1/2
ℓk

= {(p− 2)bℓk + b̃ℓk}−1/2 +O(p−7/4) .

Hence, we complete the proof of Theorem 1(c). ✷
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C. Proof of Proposition 6. To construct Proposition 6, we need the following lemmas

whose proofs are given in Sections G.2 and G.3, respectively.

LEMMA 2. Let Condition 1 hold and (α,β) ∈M(γ;C1) for some fixed constant C1 ∈
(0,0.5). If γ≫ p−1/3 log1/6 p, it holds that

max
i: i 6=ℓ
|λ̂i,ℓ − λi,ℓ|=Op

(
log1/2 p

γ3p1/2

)

for any given ℓ ∈ [p], where λ̂i,ℓ is defined in (A.4).

LEMMA 3. Let Condition 1 hold and (α,β) ∈M(γ;C1) for some fixed constant C1 ∈
(0,0.5). If γ≫ p−1/3 log1/6 p, it holds that

max
i: i 6=ℓ
|V̂ar(Zi,ℓ)−Var(Zi,ℓ)|= (3γ +α− β)

{
Op

(
log1/2 p

γ2p

)
+Op

(
log1/2 p

p1/2

)}

for any given ℓ ∈ [p], where V̂ar(Zi,ℓ) is defined in (A.5).

Recall that

bℓ =
1

p− 1

∑

i: i 6=ℓ

λ2i,ℓVar(Zi,ℓ) and b̂ℓ =
1

p− 1

∑

i: i 6=ℓ

λ̂2i,ℓV̂ar(Zi,ℓ) .

Then

b̂ℓ − bℓ =
1

p− 1

∑

i: i 6=ℓ

(λ̂2i,ℓ− λ2i,ℓ)Var(Zi,ℓ) +
1

p− 1

∑

i: i 6=ℓ

λ2i,ℓ{V̂ar(Zi,ℓ)−Var(Zi,ℓ)}

+
1

p− 1

∑

i: i 6=ℓ

(λ̂2i,ℓ − λ2i,ℓ){V̂ar(Zi,ℓ)−Var(Zi,ℓ)} .

Note that λi,ℓ ≍ γ−1 and Var(Zi,ℓ)≍ 1. By Lemmas 2 and 3,

|b̂ℓ − bℓ|. max
i: i 6=ℓ
|λ̂2i,ℓ− λ2i,ℓ|+ γ−2max

i: i 6=ℓ
|V̂ar(Zi,ℓ)−Var(Zi,ℓ)|

= Op

(
log p

γ6p

)
+Op

(
log1/2 p

γ4p1/2

)
.

Since bℓ ≍ γ−2, we have
∣∣∣∣
b̂ℓ
bℓ
− 1

∣∣∣∣=Op

(
log p

γ4p

)
+Op

(
log1/2 p

γ2p1/2

)
.

Analogously, we have

|ˆ̃bℓ − b̃ℓ|=Op

(
log1/2 p

γ9p

)
+Op

(
log1/2 p

γ7p1/2

)
.

Recall that b̃ℓ ≍ γ−6. It holds that

∣∣∣∣
ˆ̃
bℓ

b̃ℓ
− 1

∣∣∣∣=Op

(
log1/2 p

γ3p

)
+Op

(
log1/2 p

γp1/2

)
.

We complete the proof of Proposition 6. ✷
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D. Proof of Theorem 2. The proof of Theorem 2(a) is almost identical to that of The-

orem 1 given in Section B with replacing (µ̂ℓ,1, µ̂ℓ,2, µℓ,1, µℓ,2) there by the bootstrap ana-

logues (µ̂†ℓ,1, µ̂
†
ℓ,2, µ

†
ℓ,1, µ

†
ℓ,2) and is thus omitted here. We only prove Theorem 2(b). Due to

ν†ℓ = (p− 2)b†ℓ + b̃†ℓ and νℓ = (p− 2)bℓ + b̃ℓ, then ν†ℓ − νℓ = (p− 2)(b†ℓ − bℓ) + b̃†ℓ − b̃ℓ. Note

that λ†i,ℓ = (1− 2δ)−1λi,ℓ, µ
†
ℓ,1 = (1− 2δ)3µℓ,1 and µ†ℓ,2 = (1− 2δ)3µℓ,2. Then

b†ℓ − bℓ =
1

p− 1

∑

i: i 6=ℓ

λ2i,ℓ

{
Var(Z†

i,ℓ)

(1− 2δ)2
−Var(Zi,ℓ)

}
,

b̃†ℓ − b̃ℓ =
1

2N

(
µℓ,1 + µℓ,2
µℓ,1µℓ,2

)2 ∑

i,j: i 6=j,i,j 6=ℓ

{
Var(Z†

i,ℓ)

(1− 2δ)2

Var(Z†
ℓ,j)

(1− 2δ)2
Var(Z†

i,j)

(1− 2δ)2

−Var(Zi,ℓ)Var(Zℓ,j)Var(Zi,j)

}
.

Recall δ ∈ (0, c] with c < 0.5. For any i 6= ℓ, we have

∣∣∣∣
Var(Z†

i,ℓ)

(1− 2δ)2
−Var(Zi,ℓ)

∣∣∣∣=
δ(1− δ)
(1− 2δ)2

. δ .

Under Condition 1, we have

min
ℓ∈[p]

min
i: i 6=ℓ

λi,ℓ ≍ γ−1 ≍max
ℓ∈[p]

max
i: i 6=ℓ

λi,ℓ and min
ℓ∈[p]

µℓ,1 ≍ γ3 ≍max
ℓ∈[p]

µℓ,2 .

Then (p− 2)maxℓ∈[p] |b†ℓ − bℓ|. γ−2pδ and maxℓ∈[p] |b̃†ℓ − b̃ℓ|. γ−6δ, which implies

max
ℓ∈[p]
|ν†ℓ − νℓ|.

pδ

γ2
+

δ

γ6
.

Note that minℓ∈[p] νℓ ≍ pγ−2 + γ−6 ≍maxℓ∈[p] νℓ. Then

max
ℓ∈[p]

∣∣∣∣
ν†ℓ
νℓ
− 1

∣∣∣∣=O(δ) .

We complete the proof of Theorem 2(b). ✷

E. Proof of Theorem 3. Recall N = (p− 1)(p− 2). As shown in (S.B.1), it holds that

θ̂ℓ− θℓ =
Iℓ,1,1
2µℓ,1

− Iℓ,2,1
2µℓ,2︸ ︷︷ ︸

Tℓ,1

+
Iℓ,1,2(1)

2µℓ,1N
− Iℓ,2,2(1)

2µℓ,2N︸ ︷︷ ︸
Tℓ,2

+Rℓ,4 ,(S.E.1)

where maxℓ∈[p] |Rℓ,4|=Op(γ
−6p−2 log p) +Op(γ

−2p−1 log p). By (S.B.6),

Tℓ,1 =−
1

N

∑

i,j: i 6=j, i,j 6=ℓ

(
µℓ,1 + µℓ,2
2µℓ,1µℓ,2

)
Z̊i,ℓZ̊ℓ,jZ̊i,j − Jℓ,1 − Jℓ,2 .

Following the arguments for deriving (S.B.7), we havemaxℓ∈[p] |Jℓ,2|=Op(γ
−1p−1 log1/2 p).

Together with (S.B.11), we have maxℓ∈[p] |Jℓ,1 + Jℓ,2| = Op(γ
−2p−1 log p). Recall Tℓ,2 =

(p− 1)−1
∑

i: i 6=ℓ λi,ℓZ̊i,ℓ with λi,ℓ specified in (3.11). By (S.E.1), we have

θ̂ℓ− θℓ =−
1

N

∑

i,j: i 6=j, i,j 6=ℓ

(
µℓ,1 + µℓ,2
2µℓ,1µℓ,2

)
Z̊i,ℓZ̊ℓ,jZ̊i,j +

1

p− 1

∑

i: i 6=ℓ

λi,ℓZ̊i,ℓ +Rℓ,14 ,
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where maxℓ∈[p] |Rℓ,14| = Op(γ
−6p−2 log p) + Op(γ

−2p−1 log p). Recall νℓ = (p − 2)bℓ +

b̃ℓ ≍ pγ−2 + γ−6. Then

√
Nν

−1/2
ℓ (θ̂ℓ − θℓ) =−

1√
N

∑

i,j: i 6=j, i,j 6=ℓ

ν
−1/2
ℓ

{(
µℓ,1 + µℓ,2
2µℓ,1µℓ,2

)
Z̊i,ℓZ̊ℓ,jZ̊i,j − λi,ℓZ̊i,ℓ

}

+Rℓ,15 ,

where maxℓ∈[p] |Rℓ,15|=Op(γ
−1p−1/2 log p) +Op(γ

−3p−1 log p). Notice that

√
N(ν†ℓ )

−1/2(θ̂ℓ − θℓ) =
√
Nν

−1/2
ℓ (θ̂ℓ − θℓ) +

√
Nν

−1/2
ℓ

{(
νℓ

ν†ℓ

)1/2

− 1

}
(θ̂ℓ − θℓ)

=
√
Nν

−1/2
ℓ (θ̂ℓ − θℓ) +Rℓ,16 .

By Theorem 2(b), maxℓ∈[p] |(νℓ/ν†ℓ )1/2 − 1| = O(δ). Together with Proposition 3, we have

maxℓ∈[p] |Rℓ,16|=Op(δ log
1/2 p). Given (i, j) such that i 6= j, we define

Y(i,j),ℓ =−ν−1/2
ℓ

{(
µℓ,1 + µℓ,2
2µℓ,1µℓ,2

)
Z̊i,ℓZ̊ℓ,jZ̊i,j − λi,ℓZ̊i,ℓ

}
(S.E.2)

for any ℓ 6= i, j, and Y(i,j),ℓ = 0 for ℓ= i or j. Write Rℓ,17 =Rℓ,15 +Rℓ,16. Hence,

√
N(ν†ℓ )

−1/2(θ̂ℓ − θℓ) =
1√
N

∑

i,j: i 6=j

Y(i,j),ℓ +Rℓ,17 =: hℓ +Rℓ,17 ,

where maxℓ∈[p] |Rℓ,17|=Op(γ
−1p−1/2 log p) +Op(γ

−3p−1 log p) +Op(δ log
1/2 p).

Write V† = diag(ν†1, . . . , ν
†
p), h= (h1, . . . , hp)

⊤ and r̃= (R1,17, . . . ,Rp,17)
⊤. Then

(S.E.3)
√
N(V†)−1/2(θ̂− θ) = h+ r̃ .

Lemma 4 states the property of B=Cov(h), whose proof is given in Section G.4.

LEMMA 4. Write B= (Bℓ1,ℓ2)p×p. Then max1≤ℓ1 6=ℓ2≤p |Bℓ1,ℓ2 |. p−1 and Bℓ,ℓ = 1 for

any ℓ ∈ [p].

Define

̺= sup
u∈Rp

∣∣P(h≤ u)− P(ξ ≤ u)
∣∣

with ξ ∼N (0, Ip). By (S.E.3), we have

P{
√
N(V†)−1/2(θ̂− θ)≤ u}= P(h+ r̃≤ u, |r̃|∞ ≤ ǫ) + P(h+ r̃≤ u, |r̃|∞ > ǫ)

for any ǫ > 0, which implies

P{
√
N(V†)−1/2(θ̂− θ)≤ u} ≤ P(h≤ u+ ǫ) + P(|r̃|∞ > ǫ) ,

P{
√
N(V†)−1/2(θ̂− θ)≤ u} ≥ P(h≤ u− ǫ, |r̃|∞ ≤ ǫ)≥ P(h≤ u− ǫ)− P(|r̃|∞ > ǫ) .
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Therefore,

P{
√
N(V†)−1/2(θ̂− θ)≤ u} − P(ξ ≤ u)

≤ P(h≤ u+ ǫ)− P(ξ ≤ u+ ǫ) + P(ξ ≤ u+ ǫ)− P(ξ ≤ u) + P(|r̃|∞ > ǫ)(S.E.4)

≤ ̺+ P(ξ ≤ u+ ǫ)− P(ξ ≤ u) + P(|r̃|∞ > ǫ) ,

P{
√
N(V†)−1/2(θ̂− θ)≤ u} − P(ξ ≤ u)

≥ P(h≤ u− ǫ)− P(ξ ≤ u− ǫ) + P(ξ ≤ u− ǫ)− P(ξ ≤ u)− P(|r̃|∞ > ǫ)

≥−̺+ P(ξ ≤ u− ǫ)− P(ξ ≤ u)− P(|r̃|∞ > ǫ) ,

which implies that

sup
u∈Rp

∣∣P{
√
N(V†)−1/2(θ̂− θ)≤ u} − P(ξ ≤ u)

∣∣

≤ ̺+ sup
u∈Rp

∣∣P(ξ ≤ u+ ǫ)− P(ξ ≤ u)
∣∣+ P(|r̃|∞ > ǫ)(S.E.5)

≤ ̺+Cǫ log1/2 p+ P(|r̃|∞ > ǫ) .

The last step in above inequality is due to Nazarov’s inequality (Chernozhukov, Chetverikov and Kato,

2017, Lemma A.1). As we will show in Section E.1, ̺→ 0 as p →∞. Recall |r̃|∞ =

Op(p
−1/2γ−1 log p)+Op(p

−1γ−3 log p)+Op(δ log
1/2 p). Since γ≫ p−1/3 log1/2 p and δ≪

(log p)−1, we know p−1/2γ−1 log3/2 p+p−1γ−3 log3/2 p+δ log p→ 0 as p→∞. Therefore,

there exists ǫ > 0 satisfying p−1/2γ−1 log p+ p−1γ−3 log p+ δ log1/2 p≪ ǫ≪ (log p)−1/2.

For such selected ǫ, we have Cǫ log1/2 p+ P(|r̃|∞ > ǫ)→ 0 as p→∞. Then we complete

the proof of Theorem 3 by (S.E.5). ✷

E.1. To show ̺→ 0 as p→∞. Let g ∼ N (0,B) with B specified in Lemma 4, and

define

¯̺= sup
u∈Rp

|P(h≤ u)− P(g≤ u)| .

Then

̺≤ ¯̺+ sup
u∈Rp

|P(ξ ≤ u)− P(g≤ u)| .

Recall ξ ∼N (0, Ip) and g∼N (0,B) with |Ip−B|∞ . p−1. By Lemma 1 of Chang, Chen and Wu

(2024), we have

sup
u∈Rp

|P(ξ ≤ u)− P(g≤ u)|. |Ip −B|1/3∞ log2/3 p. p−1/3 log2/3 p→ 0 .

To show ̺→ 0 as p→∞, it suffices to show ¯̺→ 0 as p→∞. Define

̺∗ = sup
u∈Rp,v∈[0,1]

|P(√vh+
√
1− vg≤ u)− P(g≤ u)|

with g ∼N (0,B). It is obvious that ¯̺≤ ̺∗. In the sequel, we will show ̺∗→ 0 as p→∞.

Let β := φ log p. For a given u= (u1, . . . , up)
⊤ ∈Rp, we define

(S.E.6) Fβ(y) := β−1 log

[ p∑

ℓ=1

exp{β(yℓ − uℓ)}
]

for any y= (y1, . . . , yp)
⊤ ∈Rp. Such defined function Fβ(y) satisfies the property

0≤ Fβ(y)−max
ℓ∈[p]

(yℓ− uℓ)≤
log p

β
=

1

φ
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for any y ∈ Rp. Select a thrice continuously differentiable function f0 : R→ [0,1] whose

derivatives up to the third order are all bounded such that f0(t) = 1 for t≤ 0 and f0(t) = 0
for t ≥ 1. Define f(t) := f0(φt) for any t ∈ R, and q(y) := f{Fβ(y)} for any y ∈ Rp. To

simplify the notation, we write qℓ(y) = ∂q(y)/∂yℓ , qℓk(y) = ∂2q(y)/∂yℓ∂yk and qℓkl(y) =
∂3q(y)/∂yℓ∂yk∂yl. Let g̃ be an independent copy of g. Define

T := q(
√
vh+

√
1− vg)− q(g̃) .

Lemma 5 gives an upper bound for supv∈[0,1] |E(T )|, whose proof is given in Section G.5.

LEMMA 5. If φ≪ p1/2(log p)−3/2, then supv∈[0,1] |E(T )|. p−1/2φ3 log7/2 p.

Write δ =
√
vh+

√
1− vg. Notice that

P(δ ≤ u− φ−1)≤ P{Fβ(δ)≤ 0} ≤ E{q(δ)} ≤ P{Fβ(g̃)≤ φ−1}+E(T )
≤ P(g̃≤ u+ φ−1) + |E(T )|

≤ P(g̃≤ u− φ−1) +Cφ−1 log1/2 p+ |E(T )|

and P(δ ≤ u−φ−1)≥ P(g̃≤ u−φ−1)−Cφ−1 log1/2 p− |E(T )|. Together with Lemma 5,

we have

̺∗ = sup
u∈Rp,v∈[0,1]

|P(δ ≤ u)− P(g≤ u)|

≤Cφ−1 log1/2 p+ sup
v∈[0,1]

|E(T )|. φ−1 log1/2 p+ p−1/2φ3 log7/2 p .

Selecting φ = p1/8 log−3/4 p, we have ̺∗ . p−1/8log5/4 p as p→∞. Hence, it holds that

̺→ 0 as p→∞. ✷

F. Proof of Proposition 5. Recall s = |S| and χp = exp(−|ξ+| ∨ maxℓ∈S |θ̌+ℓ |). De-

fine Ai,ℓ = 2
∑

j: j 6=i,ℓE{ϕ(ℓ,j),1}E{ϕ(i,j),0}. To prove Proposition 5, we need the following

lemmas whose proofs are given in Sections G.9 and G.10, respectively.

LEMMA 6. Let (α,β) ∈M(γ,C1) for some fixed constant C1 ∈ (0,0.5). It holds that

min
ℓ∈S

µℓ,1 & p2ω2−2ω1χ5
pγ

3 , min
ℓ∈Sc

µℓ,1 & p−2ω1χ3
pγ

3 ,

min
ℓ∈S

µℓ,2 & p−ω1χ5
pγ

3 , min
ℓ∈Sc

µℓ,2 & p−ω1χ3
pγ

3 .

LEMMA 7. Let (α,β) ∈M(γ,C1) for some fixed constant C1 ∈ (0,0.5). It holds that

max
ℓ∈S
|µ̂ℓ,1− µℓ,1|= Op

[
γ2p−3/2{spmin(2ω2−ω1,0)χ−1

p + p1+ω2−ω1}χ−2
p log1/2 s

]

+Op(γp
−1 log s) +Op(p

−1 log1/2 s) ,

max
ℓ∈Sc
|µ̂ℓ,1− µℓ,1|= Op

[
γ2s1/2p−2{spmin(−ω2, ω2−ω1)χ−4

p + p1−ω1}χ−1
p log1/2 p

]

+Op

{
γ2p−3/2(spω2−ω1χ−1

p + p1−ω1)χ−1
p log1/2 p

}

+Op(γp
−1 log p) +Op(p

−1 log1/2 p) ,

max
ℓ∈S
|µ̂ℓ,2− µℓ,2|= Op

[
γ2s1/2p−2{spmin(2ω2−ω1, ω1−2ω2)χ−1

p + p1+ω2−ω1}χ−2
p log1/2 s

]
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+Op

[
γ2p−3/2{spmin(−ω2, ω2−ω1)χ−4

p + p1−ω1}χ−1
p log1/2 s

]

+Op

[
γsp−2{p2ω2−ω1χ−3

p I(ω1 > 2ω2) + I(ω1 ≤ 2ω2)} log s
]

+Op

[
γs1/2p−3/2{pω2−ω1χ−2

p I(ω1 > ω2) + I(ω1 = ω2)} log s
]

+Op

[
γp−1{p−ω1χ−1

p I(ω1 > 0) + I(ω1 = 0)} log s
]

+Op(p
−1 log1/2 s) ,

max
ℓ∈Sc
|µ̂ℓ,2− µℓ,2|= Op

[
γ2s1/2p−2{spmin(2ω2−ω1,0)χ−1

p + p1+ω2−ω1}χ−2
p log1/2 p

]

+Op

{
γ2p−3/2(spω2−ω1χ−1

p + p1−ω1)χ−1
p log1/2 p

}

+Op

[
γsp−2{p2ω2−ω1χ−3

p I(ω1 > 2ω2) + I(ω1 ≤ 2ω2)} log p
]

+Op

[
γs1/2p−3/2{pω2−ω1χ−2

p I(ω1 > ω2) + I(ω1 = ω2)} log p
]

+Op

[
γp−1{p−ω1χ−1

p I(ω1 > 0) + I(ω1 = 0)} log p
]

+Op(p
−1 log1/2 p) .

Now we begin to prove Proposition 5. Recall ζ̂ℓ = µ̂ℓ,1/µ̂ℓ,2 and ζℓ = µℓ,1/µℓ,2. Then

ζ̂ℓ− ζℓ =
µ̂ℓ,1− µℓ,1

µℓ,2
− µℓ,1
µ2ℓ,2

(µ̂ℓ,2 − µℓ,2)

− (µ̂ℓ,1 − µℓ,1)(µ̂ℓ,2 − µℓ,2)
µℓ,2µ̂ℓ,2

+
µℓ,1(µ̂ℓ,2 − µℓ,2)2

µ̂ℓ,2µ
2
ℓ,2

,

which implies

max
ℓ∈S

∣∣∣∣
1

ζℓ
(ζ̂ℓ − ζℓ)

∣∣∣∣≤
(
maxℓ∈S |µ̂ℓ,1− µℓ,1|

minℓ∈S µℓ,1
+

maxℓ∈S |µ̂ℓ,2 − µℓ,2|
minℓ∈S µℓ,2

)
·Op(1) = op(1)

provided that

max
ℓ∈S
|µ̂ℓ,1− µℓ,1|= op

(
min
ℓ∈S

µℓ,1

)
and max

ℓ∈S
|µ̂ℓ,2− µℓ,2|= op

(
min
ℓ∈S

µℓ,2

)
.(S.F.1)

Since θℓ = log(ζℓ)/2 and θ̂ℓ = log(ζ̂ℓ)/2, under (S.F.1), it follows from the Taylor expansion

that

max
ℓ∈S
|θ̂ℓ − θℓ| ≤ Op(1) ·max

ℓ∈S

∣∣∣∣
1

ζℓ
(ζ̂ℓ − ζℓ)

∣∣∣∣

≤
(
maxℓ∈S |µ̂ℓ,1 − µℓ,1|

minℓ∈S µℓ,1
+

maxℓ∈S |µ̂ℓ,2− µℓ,2|
minℓ∈S µℓ,2

)
·Op(1) .(S.F.2)

Analogously, we also have

max
ℓ∈Sc
|θ̂ℓ − θℓ| ≤

(
maxℓ∈Sc |µ̂ℓ,1 − µℓ,1|

minℓ∈Sc µℓ,1
+

maxℓ∈Sc |µ̂ℓ,2− µℓ,2|
minℓ∈Sc µℓ,2

)
·Op(1)(S.F.3)

provided that

max
ℓ∈Sc
|µ̂ℓ,1− µℓ,1|= op

(
min
ℓ∈Sc

µℓ,1

)
and max

ℓ∈Sc
|µ̂ℓ,2− µℓ,2|= op

(
min
ℓ∈Sc

µℓ,2

)
.(S.F.4)
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As shown in Section F.1, we need to require (ω1, ω2) to satisfy 0 ≤ ω1 − ω2 < 1/2 and

0≤ ω2 ≤ ω1 < 1, and the restrictions in (S.F.1) can be simplified as

(S.F.5) γ≫





sp−3/2+min(2ω1−2ω2, ω1)χ−8
p log1/2 s ,

p−1/3+max(2ω1−2ω2, ω1)/3χ−5/3
p log1/6 s ,

s1/2p−1+ω2χ−7
p log1/2 s .

As shown in Section F.2, we need to require (ω1, ω2) to satisfy 0≤ ω2 ≤ ω1 < 1/2, and the

restrictions in (S.F.4) can be simplified as

(S.F.6) γ≫





s3/2p−2+min(2ω1−ω2, ω1+ω2)χ−8
p log1/2 p ,

sp−3/2+ω1+ω2χ−5
p log1/2 p ,

p−1/3+2ω1/3χ−1
p log1/6 p .

Due to s≪ p and χ−1
p = exp{o(log p)}, if 0≤ ω2 ≤ ω1 < 1/2, we have

sp−3/2+min(2ω1−2ω2, ω1)χ−8
p log1/2 s. p−1/3+2ω1/3χ−1

p log1/6 p ,

s1/2p−1+ω2χ−7
p log1/2 s. p−1/3+2ω1/3χ−1

p log1/6 p .

Therefore, combining (S.F.5) and (S.F.6), if 0 ≤ ω2 ≤ ω1 < 1/2, (S.F.1) and (S.F.4) hold

provided that

(S.F.7) γ≫





p−1/3+max(2ω1−2ω2, ω1)/3χ−5/3
p log1/6 s ,

sp−3/2+ω1+ω2χ−5
p log1/2 p ,

s3/2p−2+min(2ω1−ω2, ω1+ω2)χ−8
p log1/2 p ,

p−1/3+2ω1/3χ−1
p log1/6 p .

Under (S.F.7) with 0≤ ω2 ≤ ω1 < 1/2, by (S.F.2) and Lemmas 6 and 7, it holds that

max
ℓ∈S
|θ̂ℓ− θℓ|= Op

(
γ−1p−1/2+ω1−ω2χ−7

p log1/2 s
)
+Op

(
γ−2p−1+2ω1−2ω2χ−5

p log s
)

+Op

{
γ−1sp−3/2+min(2ω1−2ω2, ω1)χ−8

p log1/2 s
}

+Op

{
γ−3p−1+max(2ω1−2ω2, ω1)χ−5

p log1/2 s
}

+Op

(
γ−1s1/2p−1+ω2χ−7

p log1/2 s
)
+Op

(
γ−1p−1/2χ−6

p log1/2 s
)

+Op

{
γ−1s3/2p−2+min(2ω2,2ω1−2ω2)χ−8

p log1/2 s
}

+Op

{
γ−1sp−3/2+min(ω1−ω2, ω2)χ−10

p log1/2 s
}

+Op

[
γ−2sp−2+ω1{p2ω2−ω1χ−3

p I(ω1 > 2ω2) + I(ω1 ≤ 2ω2)}χ−5
p log s

]

+Op

[
γ−2s1/2p−3/2+ω1{pω2−ω1χ−2

p I(ω1 > ω2) + I(ω1 = ω2)}χ−5
p log s

]

+Op

[
γ−2p−1+ω1{p−ω1χ−1

p I(ω1 > 0) + I(ω1 = 0)}χ−5
p log s

]
,

max
ℓ∈Sc
|θ̂ℓ− θℓ|= Op

(
γ−1s1/2p−1+ω1χ−4

p log1/2 p
)
+Op

(
γ−1sp−3/2+ω1+ω2χ−5

p log1/2 p
)

+Op

{
γ−1s3/2p−2+min(2ω1−ω2, ω1+ω2)χ−8

p log1/2 p
}
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+Op

(
γ−1p−1/2+ω1χ−4

p log1/2 p
)
+Op

(
γ−2p−1+2ω1χ−3

p log p
)

+Op

(
γ−1s1/2p−1+ω2χ−5

p log1/2 p
)
+Op

(
γ−3p−1+2ω1χ−3

p log1/2 p
)

+Op

{
γ−1s3/2p−2+min(2ω2, ω1)χ−6

p log1/2 p
}
.

Due to χp ∈ (0,1] and s≪ p, under (S.F.7) with 0≤ ω2 ≤ ω1 < 1/2, we have

γ−2p−1+2ω1−2ω2χ−5
p log s+ γ−1p−1/2χ−6

p log1/2 s

. γ−1p−1/2+ω1−ω2χ−7
p log1/2 s ,

γ−1s3/2p−2+min(2ω2,2ω1−2ω2)χ−8
p log1/2 s

. γ−1sp−3/2+min(2ω1−2ω2, ω1)χ−8
p log1/2 s ,

γ−2sp−2+ω1{p2ω2−ω1χ−3
p I(ω1 > 2ω2) + I(ω1 ≤ 2ω2)}χ−5

p log s

. γ−1s1/2p−1+ω2χ−7
p log1/2 s ,

γ−2s1/2p−3/2+ω1{pω2−ω1χ−2
p I(ω1 > ω2) + I(ω1 = ω2)}χ−5

p log s

. γ−1s1/2p−1+ω2χ−7
p log1/2 s ,

γ−2p−1+ω1{p−ω1χ−1
p I(ω1 > 0) + I(ω1 = 0)}χ−5

p log s

. γ−1p−1/2+ω1−ω2χ−7
p log1/2 s ,

γ−1s1/2p−1+ω1χ−4
p log1/2 p+ γ−2p−1+2ω1χ−3

p log p

. γ−1p−1/2+ω1χ−4
p log1/2 p ,

γ−1s3/2p−2+min(2ω2, ω1)χ−6
p log1/2 p

. γ−1s3/2p−2+min(2ω1−ω2, ω1+ω2)χ−8
p log1/2 p ,

which implies

max
ℓ∈S
|θ̂ℓ− θℓ|= Op

(
γ−1p−1/2+ω1−ω2χ−7

p log1/2 s
)
+Op

(
γ−1s1/2p−1+ω2χ−7

p log1/2 s
)

+Op

{
γ−1sp−3/2+min(2ω1−2ω2, ω1)χ−8

p log1/2 s
}

+Op

{
γ−1sp−3/2+min(ω1−ω2, ω2)χ−10

p log1/2 s
}

+Op

{
γ−3p−1+max(2ω1−2ω2, ω1)χ−5

p log1/2 s
}
,

max
ℓ∈Sc
|θ̂ℓ− θℓ|= Op

{
γ−1s3/2p−2+min(2ω1−ω2, ω1+ω2)χ−8

p log1/2 p
}

+Op

(
γ−1p−1/2+ω1χ−4

p log1/2 p
)
+Op

(
γ−1sp−3/2+ω1+ω2χ−5

p log1/2 p
)

+Op

(
γ−1s1/2p−1+ω2χ−5

p log1/2 p
)
+Op

(
γ−3p−1+2ω1χ−3

p log1/2 p
)
.

Hence, it holds that

max
ℓ∈[p]
|θ̂ℓ − θℓ|= Õp

(
γ−1p−1/2+ω1 log1/2 p

)
+ Õp

(
γ−1sp−3/2+ω1+ω2 log1/2 p

)

+ Õp

(
γ−3p−1+2ω1 log1/2 p

)
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provided that

γ≫ χ−8
p ·

{
sp−3/2+ω1+ω2 log1/2 p ,

p−1/3+2ω1/3 log1/6 p .

We complete the proof of Proposition 5. ✷

F.1. Sufficient conditions for (S.F.1). By Lemmas 6 and 7, to make (S.F.1) hold, it suf-

fices to require




γ2p−1/2+ω2−ω1χ−2
p log1/2 s≪ p2ω2−2ω1χ5

pγ
3 ,

γ2sp−3/2+min(2ω2−ω1,0)χ−3
p log1/2 s≪ p2ω2−2ω1χ5

pγ
3 ,

γp−1 log s≪ p2ω2−2ω1χ5
pγ

3 ,

p−1 log1/2 s≪ p2ω2−2ω1χ5
pγ

3 ,

γ2s1/2p−1+ω2−ω1χ−2
p log1/2 s≪ p−ω1χ5

pγ
3 ,

γ2s3/2p−2+min(2ω2−ω1, ω1−2ω2)χ−3
p log1/2 s≪ p−ω1χ5

pγ
3 ,

γ2p−1/2−ω1χ−1
p log1/2 s≪ p−ω1χ5

pγ
3 ,

γ2sp−3/2+min(−ω2, ω2−ω1)χ−5
p log1/2 s≪ p−ω1χ5

pγ
3 ,

γsp−2{p2ω2−ω1χ−3
p I(ω1 > 2ω2) + I(ω1 ≤ 2ω2)} log s≪ p−ω1χ5

pγ
3 ,

γs1/2p−3/2{pω2−ω1χ−2
p I(ω1 >ω2) + I(ω1 = ω2)} log s≪ p−ω1χ5

pγ
3 ,

γp−1{p−ω1χ−1
p I(ω1 > 0) + I(ω1 = 0)} log s ≪ p−ω1χ5

pγ
3 ,

p−1 log1/2 s≪ p−ω1χ5
pγ

3 ,

which is equivalent to

(S.F.8) γ≫





p−1/2+ω1−ω2χ−7
p log1/2 s ,

sp−3/2+min(2ω1−2ω2, ω1)χ−8
p log1/2 s ,

p−1/3+max(2ω1−2ω2, ω1)/3χ−5/3
p log1/6 s ,

s1/2p−1+ω2χ−7
p log1/2 s ,

s3/2p−2+min(2ω2,2ω1−2ω2)χ−8
p log1/2 s ,

sp−3/2+min(ω1−ω2, ω2)χ−10
p log1/2 s ,

s1/4p−3/4χ−5/2
p {pω2/2χ−1

p I(ω1 > ω2) + pω1/2I(ω1 = ω2)} log1/2 s .

Due to s≤ p, ω1 ≥ ω2, ω2 ∈ [0,1) and χ−1
p = exp{o(log p)}, then

s1/4p−3/4χ−5/2
p {pω2/2χ−1

p I(ω1 > ω2) + pω1/2I(ω1 = ω2)} log1/2 s

≤ s1/4p−3/4+ω2/2χ−7/2
p log1/2 s

. p−1/3+ω2/3χ−5/3
p log1/6 s≤ p−1/3+max(2ω1−2ω2, ω1)/3χ−5/3

p log1/6 s ,

sp−3/2+min(ω1−ω2, ω2)χ−10
p log1/2 s
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.

{
sp−3/2+min(2ω1−2ω2, ω1)χ−8

p log1/2 s , if ω1 >ω2 ,

p−1/3+max(2ω1−2ω2, ω1)/3χ−5/3
p log1/6 s , if ω1 = ω2 ,

s3/2p−2+min(2ω2,2ω1−2ω2)χ−8
p log1/2 s

.

{
sp−3/2+ω1χ−8

p log1/2 s , if ω1 ≥ 2ω2 ,

sp−3/2+2ω1−2ω2χ−8
p log1/2 s , if ω1 < 2ω2 ,

= sp−3/2+min(2ω1−2ω2, ω1)χ−8
p log1/2 s .

Notice that γ = O(1) and 0 ≤ ω1 − ω2 < 1 with ω2 ∈ [0,1). We need to require (ω1, ω2)
to satisfy 0 ≤ ω1 − ω2 < 1/2 and 0 ≤ ω2 ≤ ω1 < 1. Under such restrictions, due to χ−1

p =
exp{o(log p)}, we have

p−1/2+ω1−ω2χ−7
p log1/2 s. p−1/3+max(2ω1−2ω2, ω1)/3χ−5/3

p log1/6 s .

Then (S.F.8) can be simplified as

γ≫





sp−3/2+min(2ω1−2ω2, ω1)χ−8
p log1/2 s ,

p−1/3+max(2ω1−2ω2, ω1)/3χ−5/3
p log1/6 s ,

s1/2p−1+ω2χ−7
p log1/2 s ,

which gives the sufficient conditions for (S.F.1). ✷

F.2. Sufficient conditions for (S.F.4). By Lemmas 6 and 7, to make (S.F.4) hold, it suf-

fices to require




γ2s1/2p−1−ω1χ−1
p log1/2 p≪ p−2ω1χ3

pγ
3 ,

γ2s3/2p−2+min(−ω2, ω2−ω1)χ−5
p log1/2 p≪ p−2ω1χ3

pγ
3 ,

γ2p−1/2−ω1χ−1
p log1/2 p≪ p−2ω1χ3

pγ
3 ,

γ2sp−3/2+ω2−ω1χ−2
p log1/2 p≪ p−2ω1χ3

pγ
3 ,

γp−1 log p≪ p−2ω1χ3
pγ

3 ,

p−1 log1/2 p≪ p−2ω1χ3
pγ

3 ,

γ2s1/2p−1+ω2−ω1χ−2
p log1/2 p≪ p−ω1χ3

pγ
3 ,

γ2s3/2p−2+min(2ω2−ω1,0)χ−3
p log1/2 p≪ p−ω1χ3

pγ
3 ,

which is equivalent to

(S.F.9) γ≫





s3/2p−2+min(2ω1−ω2, ω1+ω2)χ−8
p log1/2 p ,

p−1/2+ω1χ−4
p log1/2 p ,

sp−3/2+ω1+ω2χ−5
p log1/2 p ,

p−1/3+2ω1/3χ−1
p log1/6 p ,

s1/2p−1+ω2χ−5
p log1/2 p ,

s3/2p−2+min(2ω2, ω1)χ−6
p log1/2 p .
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Due to s≤ p, ω1 ≥ ω2, ω2 ∈ [0,1) and χ−1
p = exp{o(log p)}, then

s3/2p−2+min(2ω2, ω1)χ−6
p log1/2 p

.

{
s3/2p−2+ω1+ω2χ−8

p log1/2 p , if ω1 ≥ 2ω2 ,

s3/2p−2+2ω1−ω2χ−8
p log1/2 p , if ω1 < 2ω2 ,

= s3/2p−2+min(2ω1−ω2, ω1+ω2)χ−8
p log1/2 p .

Notice that γ = O(1) and 0≤ ω1 − ω2 < 1 with ω2 ∈ [0,1). We need to require (ω1, ω2) to

satisfy 0≤ ω2 ≤ ω1 < 1/2. Under such restrictions, due to χ−1
p = exp{o(log p)}, we have

p−1/2+ω1χ−4
p log1/2 p. p−1/3+2ω1/3χ−1

p log1/6 p ,

s1/2p−1+ω2χ−5
p log1/2 p. p−1/3+2ω1/3χ−1

p log1/6 p .

Then (S.F.9) can be simplified as

γ≫





s3/2p−2+min(2ω1−ω2, ω1+ω2)χ−8
p log1/2 p ,

sp−3/2+ω1+ω2χ−5
p log1/2 p ,

p−1/3+2ω1/3χ−1
p log1/6 p ,

which gives the sufficient conditions for (S.F.4). ✷

G. Proofs of Lemmas 1–7.

G.1. Proof of Lemma 1. For any i, j, ℓ ∈ [p], let ψ̊1(i, j; ℓ) = ψ1(i, j; ℓ)− E{ψ1(i, j; ℓ)}
and ψ̊2(i, j; ℓ) = ψ2(i, j; ℓ) − E{ψ2(i, j; ℓ)}, where ψ1(i, j; ℓ) = ϕ(i,ℓ),1ϕ(i,j),0ϕ(ℓ,j),1 and

ψ2(i, j; ℓ) = ϕ(i,ℓ),0ϕ(i,j),1ϕ(ℓ,j),0. Then

µ̂ℓ,1− µℓ,1 =
1

|Hℓ|
∑

(i,j)∈Hℓ

ψ̊1(i, j; ℓ) and µ̂ℓ,2 − µℓ,2 =
1

|Hℓ|
∑

(i,j)∈Hℓ

ψ̊2(i, j; ℓ) .

Write Fℓ = {Zi,ℓ,Zℓ,j : (i, j) ∈ Hℓ}. For any (i, j) ∈ Hℓ, we have E{ψ1(i, j; ℓ) |Fℓ} =
ϕ(i,ℓ),1ϕ(ℓ,j),1E{ϕ(i,j),0} and

1

|Hℓ|
∑

(i,j)∈Hℓ

ψ̊1(i, j; ℓ) =
1

|Hℓ|
∑

(i,j)∈Hℓ

[ψ1(i, j; ℓ)−E{ψ1(i, j; ℓ) |Fℓ}]

︸ ︷︷ ︸
Iℓ,1,1

+
1

|Hℓ|
∑

(i,j)∈Hℓ

[E{ψ1(i, j; ℓ) |Fℓ} −E{ψ1(i, j; ℓ)}]

︸ ︷︷ ︸
Iℓ,1,2

.

As we will show in Sections G.1.1 and G.1.2, respectively, that

max
ℓ∈[p]
|Iℓ,1,1|=Op

(
log1/2 p

p

)
,(S.G.1)

max
ℓ∈[p]
|Iℓ,1,2|=Op

(
γ2 log1/2 p

p1/2

)
+Op

(
γ log p

p

)
,(S.G.2)
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we then have

max
ℓ∈[p]
|µ̂ℓ,1− µℓ,1|=Op

(
log1/2 p

p

)
+Op

(
γ2 log1/2 p

p1/2

)
+Op

(
γ log p

p

)
.

Similarly, we can also prove another result. ✷

G.1.1. Convergence rate of maxℓ∈[p] |Iℓ,1,1|. Conditional on Fℓ, {ψ1(i, j; ℓ)}(i,j)∈Hℓ
is

an independent sequence. For any (i, j) ∈Hℓ, write

σ2(i,j),ℓ,1 := Var{ψ1(i, j; ℓ) |Fℓ}= ϕ2
(i,ℓ),1ϕ

2
(ℓ,j),1Var(Zi,j) .

Due to (α,β) ∈M(γ;C1), we have

|Var(Zi,j)− α(1−α)|
≤ (1−α− β)(1− 2α)E(Xi,j) + (1−α− β)2E2(Xi,j)≤ 2

holds uniformly over (i, j) ∈ Hℓ. Notice that |ϕ(i,j),1| ≤ 1− α and |ϕ(i,j),0| ≤ 1− β. Then

max(i,j)∈Hℓ
|ψ1(i, j; ℓ)| ≤C and max(i,j)∈Hℓ

σ2(i,j),ℓ,1 ≤C . Due to |Hℓ|= (p− 1)(p− 2)/2,

by Bernstein inequality, we have

P(|Iℓ,1,1|>u |Fℓ). exp(−Cp2u2)
for any 0< u≤ o(1), which implies that

P(|Iℓ,1,1|> u) = E{P(|Iℓ,1,1|>u |Fℓ)}. exp(−Cp2u2)(S.G.3)

for any 0< u≤ o(1). Therefore, we have (S.G.1). ✷

G.1.2. Convergence rate of maxℓ∈[p] |Iℓ,1,2|. Define ϕ̊(i,j),τ = ϕ(i,j),τ −E{ϕ(i,j),τ}. Due

to ψ1(i, j; ℓ) = ψ1(j, i; ℓ) for any i 6= j, it then holds that

(p− 1)(p− 2)Iℓ,1,2 =
∑

i,j: i 6=j, i,j 6=ℓ

[
ϕ(i,ℓ),1ϕ(ℓ,j),1 −E{ϕ(i,ℓ),1ϕ(ℓ,j),1}

]
E{ϕ(i,j),0}

= 2
∑

i,j: i 6=j, i,j 6=ℓ

ϕ̊(i,ℓ),1E{ϕ(ℓ,j),1}E{ϕ(i,j),0}
︸ ︷︷ ︸

Iℓ,1,2(1)

(S.G.4)

+
∑

i,j: i 6=j, i,j 6=ℓ

ϕ̊(i,ℓ),1ϕ̊(ℓ,j),1E{ϕ(i,j),0}
︸ ︷︷ ︸

Iℓ,1,2(2)

.

For Iℓ,1,2(1), we have

Iℓ,1,2(1) =
∑

i: i 6=ℓ

ϕ̊(i,ℓ),1

[
2

∑

j: j 6=i,ℓ

E{ϕ(ℓ,j),1}E{ϕ(i,j),0}
]
=:

∑

i: i 6=ℓ

ϕ̊(i,ℓ),1Ai,ℓ .

Recall

E{ϕ(i,j),0}= γP(Xi,j = 0) =
γ

1 + exp(θi + θj)
,

E{ϕ(i,j),1}= γP(Xi,j = 1) =
γ exp(θi + θj)

1 + exp(θi + θj)
.
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By Condition 1, we have

min
i,j: i 6=j

E{ϕ(i,j),0} ≍ γ ≍ max
i,j: i 6=j

E{ϕ(i,j),0} ,

min
i,j: i 6=j

E{ϕ(i,j),1} ≍ γ ≍ max
i,j: i 6=j

E{ϕ(i,j),1} ,

which implies

min
ℓ∈[p]

min
i: i 6=ℓ

Ai,ℓ ≍ pγ2 ≍max
ℓ∈[p]

max
i: i 6=ℓ

Ai,ℓ .

Note that maxℓ∈[p]maxi: i 6=ℓVar{ϕ̊(i,ℓ),1}=maxℓ∈[p]maxi: i 6=ℓVar(Zi,ℓ)≤C . Given ℓ ∈ [p],
since {ϕ̊(i,ℓ),1}i: i 6=ℓ is an independent sequence, by Bernstein inequality,

P{|Iℓ,1,2(1)|> u}. exp

(
− Cu2

p3γ4

)
(S.G.5)

for any 0< u≤ o(p2γ2). Thus,

max
ℓ∈[p]
|Iℓ,1,2(1)|=Op(γ

2p3/2 log1/2 p) .(S.G.6)

For Iℓ,1,2(2), letting B(i,j) = γ−1E{ϕ(i,j),0}, then

γ−1Iℓ,1,2(2) =
∑

i,j: i 6=j, i,j 6=ℓ

ϕ̊(i,ℓ),1ϕ̊(ℓ,j),1B(i,j) .

Under Condition 1,

min
ℓ∈[p]

min
i,j: i 6=j, i,j 6=ℓ

B(i,j) ≍ 1≍max
ℓ∈[p]

max
i,j: i 6=j, i,j 6=ℓ

B(i,j) .

By the decoupling inequality of de la Peña and Montgomery-Smith (1995) and Theorem 3.3

of Giné, Latała and Zinn (2000), we have

max
ℓ∈[p]

P

{∣∣∣∣
∑

i,j: i 6=j, i,j 6=ℓ

ϕ̊(i,ℓ),1ϕ̊(ℓ,j),1B(i,j)

∣∣∣∣> u

}
. exp

(
− Cu

p

)
(S.G.7)

for any p ≪ u ≪ p2, which implies maxℓ∈[p] |Iℓ,1,2(2)| = Op(γp log p). Together with

(S.G.6), we can obtain (S.G.2) by (S.G.4). ✷

G.2. Proof of Lemma 2. As shown in Section G.1, µ̂ℓ,1 − µℓ,1 = Iℓ,1,1 + Iℓ,1,2 for

Iℓ,1,1 and Iℓ,1,2 specified there. By (S.G.3), Iℓ,1,1 = Op(p
−1). Let N = (p − 1)(p − 2). Re-

call Iℓ,1,2 = N−1{Iℓ,1,2(1) + Iℓ,1,2(2)} with Iℓ,1,2(1) and Iℓ,1,2(2) defined in (S.G.4). By

(S.G.5) and (S.G.7), Iℓ,1,2(1) = Op(γ
2p3/2) and Iℓ,1,2(2) = Op(γp). Hence, |µ̂ℓ,1 − µℓ,1|=

Op(p
−1)+Op(γ

2p−1/2). Analogously, we also have |µ̂ℓ,2−µℓ,2|=Op(p
−1)+Op(γ

2p−1/2).
For given (ℓ, i) such that i 6= ℓ, we know {ϕ(ℓ,j),1ϕ(i,j),0}j: j 6=ℓ,i and {ϕ(ℓ,j),0ϕ(i,j),1}j: j 6=ℓ,i

are two independent and bounded sequences. By Bernstein inequality,

max
i: i 6=ℓ

∣∣∣∣
1

p− 2

∑

j: j 6=ℓ,i

[
ϕ(ℓ,j),1ϕ(i,j),0 − E{ϕ(ℓ,j),1}E{ϕ(i,j),0}

]∣∣∣∣

=Op

(
log1/2 p

p1/2

)
=max

i: i 6=ℓ

∣∣∣∣
1

p− 2

∑

j: j 6=ℓ,i

[
ϕ(ℓ,j),0ϕ(i,j),1 − E{ϕ(ℓ,j),0}E{ϕ(i,j),1}

]∣∣∣∣ .

Notice that µℓ,1 ≍ γ3 ≍ µℓ,2. Based on the definition of λi,ℓ and λ̂i,ℓ given, respectively, in

(3.11) and (A.4), we complete the proof of Lemma 2. ✷
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G.3. Proof of Lemma 3. Due to

Var(Zi,ℓ) =(1− β)β +
γ(γ + α− β)

1 + exp(θi + θℓ)
− γ2

{1 + exp(θi + θℓ)}2
,

V̂ar(Zi,ℓ) =(1− β)β +
γ(γ + α− β)

1 + exp(θ̂i + θ̂ℓ)
− γ2

{1 + exp(θ̂i + θ̂ℓ)}2
,

it holds that

|V̂ar(Zi,ℓ)−Var(Zi,ℓ)| ≤γ(γ +α− β)
∣∣∣∣

1

1 + exp(θ̂i + θ̂ℓ)
− 1

1 + exp(θi + θℓ)

∣∣∣∣

+2γ2
∣∣∣∣

1

1 + exp(θ̂i + θ̂ℓ)
− 1

1 + exp(θi + θℓ)

∣∣∣∣

≤γ(3γ + α− β)
∣∣∣∣

1

1 + exp(θ̂i + θ̂ℓ)
− 1

1 + exp(θi + θℓ)

∣∣∣∣ .

Define f(x) = (1 + ex)−1 for x∈R. Then supx∈R |f ′(x)| ≤ 1. By Proposition 3, we have

max
i: i 6=ℓ

∣∣∣∣
1

1 + exp(θ̂i + θ̂ℓ)
− 1

exp(θi + θℓ)

∣∣∣∣

≤ 2max
ℓ∈[p]
|θ̂ℓ − θℓ|=Op

(
log1/2 p

γ3p

)
+Op

(
log1/2 p

γp1/2

)
,

which implies

max
i: i 6=ℓ
|V̂ar(Zi,ℓ)−Var(Zi,ℓ)|= (3γ +α− β)

{
Op

(
log1/2 p

γ2p

)
+Op

(
log1/2 p

p1/2

)}
.

We complete the proof of Lemma 3. ✷

G.4. Proof of Lemma 4. Recall E{Y(i,j),ℓ} = 0 for any (i, j, ℓ) such that i 6= j and ℓ 6=
i, j. For any ℓ1, ℓ2 ∈ [p], we have

Bℓ1,ℓ2 =
1

N

∑

i,j: i 6=j, i,j 6=ℓ1,ℓ2

E{Y(i,j),ℓ1Y(i,j),ℓ2}
︸ ︷︷ ︸

B(1)
ℓ1,ℓ2

+
1

N

∑

i,j1,j2: i6=j1,j2, j1 6=j2,

i,j1 6=ℓ1, i,j2 6=ℓ2

E{Y(i,j1),ℓ1Y(i,j2),ℓ2}

︸ ︷︷ ︸
B(2)

ℓ1,ℓ2

+
1

N

∑

i1,i2,j: j 6=i1 ,i2, i1 6=i2,

j,i1 6=ℓ1, j,i2 6=ℓ2

E{Y(i1,j),ℓ1Y(i2,j),ℓ2}

︸ ︷︷ ︸
B(3)

ℓ1,ℓ2

+
1

N

∑

i1,j1,i2,j2: i1 6=j1, i2 6=j2,

i1 6=i2, j1 6=j2, i1,j1 6=ℓ1, i2,j2 6=ℓ2

E{Y(i1,j1),ℓ1Y(i2,j2),ℓ2}

︸ ︷︷ ︸
B(4)

ℓ1,ℓ2

.
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By (S.E.2), it holds that

ν
1/2
ℓ1
ν
1/2
ℓ2

E{Y(i1,j1),ℓ1Y(i2,j2),ℓ2}

=

(
µℓ1,1 + µℓ1,2
2µℓ1,1µℓ1,2

)(
µℓ2,1 + µℓ2,2
2µℓ2,1µℓ2,2

)
E(Z̊i1,ℓ1Z̊ℓ1,j1Z̊i1,j1Z̊i2,ℓ2Z̊ℓ2,j2Z̊i2,j2)

−
(
µℓ2,1 + µℓ2,2
2µℓ2,1µℓ2,2

)
λi1,ℓ1E(Z̊i1,ℓ1Z̊i2,ℓ2Z̊ℓ2,j2Z̊i2,j2)(S.G.8)

−
(
µℓ1,1 + µℓ1,2
2µℓ1,1µℓ1,2

)
λi2,ℓ2E(Z̊i2,ℓ2Z̊i1,ℓ1Z̊ℓ1,j1Z̊i1,j1)

+ λi1,ℓ1λi2,ℓ2E(Z̊i1,ℓ1Z̊i2,ℓ2)

for any (i1, j1, ℓ1, i2, j2, ℓ2) such that i1 6= j1, i2 6= j2, i1, j1 6= ℓ1 and i2, j2 6= ℓ2. As we will

show in Sections G.4.1–G.4.4,

ν
1/2
ℓ1
ν
1/2
ℓ2
B

(1)
ℓ1,ℓ2

=

(
b̃ℓ1
2

+ bℓ1

)
I(ℓ1 = ℓ2) ,(S.G.9)

ν
1/2
ℓ1
ν
1/2
ℓ2
B

(2)
ℓ1,ℓ2

=O(γ−6p−1)I(ℓ1 6= ℓ2) + (p− 3)bℓ1I(ℓ1 = ℓ2) ,(S.G.10)

ν
1/2
ℓ1
ν
1/2
ℓ2
B

(3)
ℓ1,ℓ2

=O(γ−6p−1)I(ℓ1 6= ℓ2) ,(S.G.11)

ν
1/2
ℓ1
ν
1/2
ℓ2
B

(4)
ℓ1,ℓ2

= {O(γ−6p−1) +O(γ−2)}I(ℓ1 6= ℓ2) +
b̃ℓ1
2
I(ℓ1 = ℓ2) .(S.G.12)

By (S.G.9)–(S.G.12), we have ν
1/2
ℓ1
ν
1/2
ℓ2
Bℓ1,ℓ2 = {b̃ℓ1+(p−2)bℓ1}I(ℓ1 = ℓ2)+{O(γ−6p−1)+

O(γ−2)}I(ℓ1 6= ℓ2). Recall νℓ = (p − 2)bℓ + b̃ℓ ≍ pγ−2 + γ−6. Hence, Bℓ,ℓ = 1 for any

ℓ ∈ [p], and max1≤ℓ1 6=ℓ2≤p |Bℓ1,ℓ2 |. p−1. We complete the proof of Lemma 4. ✷

G.4.1. Proof of (S.G.9). For any (i, j, ℓ1, ℓ2) such that i 6= j, ℓ1 6= ℓ2 and i, j 6= ℓ1, ℓ2, by

(S.G.8), it holds that ν
1/2
ℓ1
ν
1/2
ℓ2

E{Y(i,j),ℓ1Y(i,j),ℓ2}= 0, which implies ν
1/2
ℓ1
ν
1/2
ℓ2
B

(1)
ℓ1,ℓ2

= 0 for

any ℓ1 6= ℓ2. For any (i, j, ℓ) such that i 6= j and i, j 6= ℓ, by (S.G.8), it holds that

νℓE{Y(i,j),ℓY(i,j),ℓ}=
(
µℓ,1 + µℓ,2
2µℓ,1µℓ,2

)2

Var(Zi,ℓ)Var(Zℓ,j)Var(Zi,j) + λ2i,ℓVar(Zi,ℓ) ,

which implies

νℓB
(1)
ℓ,ℓ =

1

N

(
µℓ,1 + µℓ,2
2µℓ,1µℓ,2

)2 ∑

i,j: i 6=j, i,j 6=ℓ

Var(Zi,ℓ)Var(Zℓ,j)Var(Zi,j)

+
1

N

∑

i,j: i 6=j, i,j 6=ℓ

λ2i,ℓVar(Zi,ℓ)

=
b̃ℓ
2
+ bℓ .

We complete the proof of (S.G.9). ✷

G.4.2. Proof of (S.G.10). For any (i, j1, j2, ℓ1, ℓ2) such that j1, j2 6= i, j1 6= j2, ℓ1 6= ℓ2,

i, j1 6= ℓ1 and i, j2 6= ℓ2, by (S.G.8), it holds that

ν
1/2
ℓ1
ν
1/2
ℓ2

E{Y(i,j1),ℓ1Y(i,j2),ℓ2}=
(
µℓ1,1 + µℓ1,2
2µℓ1,1µℓ1,2

)(
µℓ2,1 + µℓ2,2
2µℓ2,1µℓ2,2

)
Var(Zi,ℓ1)
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×Var(Zℓ1,ℓ2)Var(Zi,ℓ2)I(j2 = ℓ1, j1 = ℓ2) ,
(S.G.13)

which implies

ν
1/2
ℓ1
ν
1/2
ℓ2
B

(2)
ℓ1,ℓ2

=

(
µℓ1,1 + µℓ1,2
2µℓ1,1µℓ1,2

)(
µℓ2,1 + µℓ2,2
2µℓ2,1µℓ2,2

)

× 1

N

∑

i: i 6=ℓ1,ℓ2

Var(Zi,ℓ1)Var(Zℓ1,ℓ2)Var(Zi,ℓ2)

≍γ−6p−1

for any ℓ1 6= ℓ2. For any (i, j1, j2, ℓ) such that j1, j2 6= i, j1 6= j2 and i, j1, j2 6= ℓ, by (S.G.8),

it holds that νℓE{Y(i,j1),ℓY(i,j2),ℓ}= λ2i,ℓVar(Zi,ℓ), which implies

νℓB
(2)
ℓ,ℓ =

1

N

∑

i,j1,j2: i6=j1,j2, j1 6=j2,

i,j1,j2 6=ℓ

λ2i,ℓVar(Zi,ℓ) =
p− 3

p− 1

∑

i: i 6=ℓ

λ2i,ℓVar(Zi,ℓ) = (p− 3)bℓ .

We complete the proof of (S.G.10). ✷

G.4.3. Proof of (S.G.11). For any (i1, i2, j, ℓ1, ℓ2) such that i1, i2 6= j, i1 6= i2, ℓ1 6= ℓ2,

j, i1 6= ℓ1 and j, i2 6= ℓ2, by (S.G.8), it holds that

ν
1/2
ℓ1
ν
1/2
ℓ2

E{Y(i1,j),ℓ1Y(i2,j),ℓ2}=λℓ1,ℓ2λℓ2,ℓ1Var(Zℓ1,ℓ2)I(i1 = ℓ2, i2 = ℓ1)

+

(
µℓ1,1 + µℓ1,2
2µℓ1,1µℓ1,2

)(
µℓ2,1 + µℓ2,2
2µℓ2,1µℓ2,2

)
Var(Zj,ℓ1)(S.G.14)

×Var(Zℓ1,ℓ2)Var(Zj,ℓ2)I(i1 = ℓ2, i2 = ℓ1) ,

which implies

ν
1/2
ℓ1
ν
1/2
ℓ2
B

(3)
ℓ1,ℓ2

=
λℓ1,ℓ2λℓ2,ℓ1

N

∑

j: j 6=ℓ1,ℓ2

Var(Zℓ1,ℓ2)

+

(
µℓ1,1 + µℓ1,2
2µℓ1,1µℓ1,2

)(
µℓ2,1 + µℓ2,2
2µℓ2,1µℓ2,2

)

× 1

N

∑

j: j 6=ℓ1,ℓ2

Var(Zj,ℓ1)Var(Zℓ1,ℓ2)Var(Zj,ℓ2)

≍γ−2p−1 + γ−6p−1 ≍ γ−6p−1

for any ℓ1 6= ℓ2. For any (i1, i2, j, ℓ) such that i1, i2 6= j, i1 6= i2 and j, i1, i2 6= ℓ, by (S.G.8),

it holds that νℓE{Y(i1,j),ℓY(i2,j),ℓ}= 0, which implies νℓB
(3)
ℓ,ℓ = 0. We complete the proof of

(S.G.11). ✷

G.4.4. Proof of (S.G.12). For any (i1, j1, i2, j2, ℓ1, ℓ2) such that i1 6= j1 6= ℓ1, i2 6= j2 6=
ℓ2, i1 6= i2, j1 6= j2 and ℓ1 6= ℓ2, by (S.G.8), it holds that

ν
1/2
ℓ1
ν
1/2
ℓ2

E{Y(i1,j1),ℓ1Y(i2,j2),ℓ2}=
(
µℓ1,1 + µℓ1,2
2µℓ1,1µℓ1,2

)(
µℓ2,1 + µℓ2,2
2µℓ2,1µℓ2,2

)
Var(Zi1,ℓ1)

×Var(Zℓ1,ℓ2)Var(Zi1,ℓ2)I(j2 = i1, i2 = ℓ1, j1 = ℓ2)

+

(
µℓ1,1 + µℓ1,2
2µℓ1,1µℓ1,2

)(
µℓ2,1 + µℓ2,2
2µℓ2,1µℓ2,2

)
Var(Zℓ1,ℓ2)(S.G.15)
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×Var(Zℓ1,i2)Var(Zℓ2,i2)I(i1 = ℓ2, j2 = ℓ1, i2 = j1)

+ λℓ1,ℓ2λℓ2,ℓ1Var(Zℓ1,ℓ2)I(i1 = ℓ2, i2 = ℓ1) ,

which implies

ν
1/2
ℓ1
ν
1/2
ℓ2
B

(4)
ℓ1,ℓ2

=

(
µℓ1,1 + µℓ1,2
2µℓ1,1µℓ1,2

)(
µℓ2,1 + µℓ2,2
2µℓ2,1µℓ2,2

)

× 2

N

∑

i: i 6=ℓ1,ℓ2

Var(Zi,ℓ1)Var(Zℓ1,ℓ2)Var(Zi,ℓ2)

+
λℓ1,ℓ2λℓ2,ℓ1

N

∑

j1,j2: j1 6=j2, j1,j2 6=ℓ1,ℓ2

Var(Zℓ1,ℓ2)

≍γ−6p−1 + γ−2

for any ℓ1 6= ℓ2. For any (i1, j1, i2, j2, ℓ) such that i1 6= j1, i2 6= j2, i1 6= i2, j1 6= j2 and

i1, i2, j1, j2 6= ℓ, by (S.G.8), it holds that

νℓE{Y(i1,j1),ℓY(i2,j2),ℓ}=
(
µℓ,1 + µℓ,2
2µℓ,1µℓ,2

)2

Var(Zi1,ℓ)

×Var(Zℓ,i2)Var(Zi1,i2)I(i1 = j2, i2 = j1) ,

which implies

νℓB
(4)
ℓ,ℓ =

(
µℓ,1 + µℓ,2
2µℓ,1µℓ,2

)2 1

N

∑

i1,i2: i1 6=i2, i1,i2 6=ℓ

Var(Zi1,ℓ)Var(Zℓ,i2)Var(Zi1,i2) =
b̃ℓ
2
.

We complete the proof of (S.G.12). ✷

G.5. Proof of Lemma 5. For Y(i,j),ℓ defined as (S.E.2), let {V(i,j),ℓ}i,j,ℓ: i 6=j 6=ℓ be mean

zero normal distributed random variables that independent of the sequence {Y(i,j),ℓ}i,j,ℓ: i 6=j 6=ℓ

and Cov{V(i1,j1),ℓ1 , V(i2,j2),ℓ2}=Cov{Y(i1,j1),ℓ1 , Y(i2,j2),ℓ2} for any (i1, j1, ℓ1) and (i2, j2, ℓ2)
such that i1 6= j1 6= ℓ1 and i2 6= j2 6= ℓ2. We set V(i,j),ℓ = 0 if ℓ= i or j. Let {W(i,j),ℓ}i,j,ℓ: i 6=j 6=ℓ

be an independent copy of {V(i,j),ℓ}i,j,ℓ: i 6=j 6=ℓ. We also set W(i,j),ℓ = 0 if ℓ= i or j. For each

pair (i, j) such that i 6= j, define three p-dimensional vectors y(i,j) = {Y(i,j),1, . . . , Y(i,j),p}⊤,

v(i,j) = {V(i,j),1, . . . , V(i,j),p}⊤ and w(i,j) = {W(i,j),1, . . . ,W(i,j),p}⊤. For h specified in

(S.E.3), we know h=N−1/2
∑

i,j: i 6=j y(i,j). Recall Cov(h) =B. Then

g :=
1√
N

∑

i,j: i 6=j

v(i,j) ∼N (0,B) and g̃ :=
1√
N

∑

i,j: i 6=j

w(i,j) ∼N (0,B) .

Define c(t) =
∑

i,j: i 6=j c(i,j)(t) for any t ∈ [0,1], where

c(i,j)(t) :=
1√
N

[√
t{√vy(i,j) +

√
1− vv(i,j)}+

√
1− tw(i,j)

]
.(S.G.16)

Write c(i,j)(t) = {c(i,j),1(t), . . . , c(i,j),p(t)}⊤. Then c(1) =
√
vh +

√
1− vg and c(0) = g̃.

Define

ċ(i,j)(t) :=
1√
N

[
1√
t
{√vy(i,j) +

√
1− vv(i,j)} −

1√
1− tw(i,j)

]
(S.G.17)

and write ċ(i,j)(t) = {ċ(i,j),1(t), . . . , ċ(i,j),p(t)}⊤. Then

T = q{c(1)} − q{c(0)}=
∫ 1

0

dq{c(t)}
dt

dt=
1

2

∑

i,j: i 6=j

p∑

ℓ=1

∫ 1

0
qℓ{c(t)}ċ(i,j),ℓ(t)dt ,
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which implies

E(T ) = 1

2

∑

i,j: i 6=j

p∑

ℓ=1

∫ 1

0
E
[
qℓ{c(t)}ċ(i,j),ℓ(t)

]
dt .

Recall

ċ(i,j),ℓ(t) =
1√
N

[
1√
t
{√vY(i,j),ℓ +

√
1− vV(i,j),ℓ} −

1√
1− tW(i,j),ℓ

]

and Y(i,j),ℓ = V(i,j),ℓ =W(i,j),ℓ = 0 for ℓ= i or j. It then holds that

(S.G.18) E(T ) = 1

2

∑

i,j,ℓ: i 6=j 6=ℓ

∫ 1

0
E
[
qℓ{c(t)}ċ(i,j),ℓ(t)

]
dt .

Notice that Y(i,j),ℓ is a function of {Z̊i,ℓ, Z̊ℓ,j, Z̊i,j}. Given (i, j, ℓ) such that i 6= j 6= ℓ, we

first consider {Z̊i,ℓ, Z̊ℓ,j, Z̊i,j} will appear in which Y(i′,j′),ℓ′’s. Recall

Y(i′,j′),ℓ′ =−ν−1/2
ℓ′

{(
µℓ′,1 + µℓ′,2
2µℓ′,1µℓ′,2

)
Z̊i′,ℓ′Z̊ℓ′,j′Z̊i′,j′ − λi′,ℓ′Z̊i′,ℓ′

}
.

Then Z̊i,ℓ will appear in Y(i′,j′),ℓ′ such that either (i′, ℓ′) = (i, ℓ), (ℓ′, j′) = (i, ℓ) or (i′, j′) =

(i, ℓ) holds. Since Z̊ℓ,i = Z̊i,ℓ, we know Z̊i,ℓ is also not independent of Y(i′,j′),ℓ′ such that ei-

ther (i′, ℓ′) = (ℓ, i), (ℓ′, j′) = (ℓ, i) or (i′, j′) = (ℓ, i) holds. Given i and ℓ such that i 6= ℓ,
let S∗(i, ℓ) = {(i′, j′, ℓ′) : {i′, j′} = {i, ℓ}} ∪ {(i′, j′, ℓ′) : {j′, ℓ′} = {i, ℓ}} ∪ {(i′, j′, ℓ′) :
{ℓ′, i′} = {i, ℓ}}. Then we have Z̊i,ℓ is independent of {Y(i′,j′),ℓ′}(i′,j′,ℓ′)/∈S∗(i,ℓ). For any

(i, j, ℓ) such that i 6= j 6= ℓ, define

S(i, j, ℓ) = S∗(i, j) ∪ S∗(j, ℓ) ∪ S∗(ℓ, i) .
We know Y(i,j),ℓ is independent of {Y(i′,j′),ℓ′}(i′,j′,ℓ′)/∈S(i,j,ℓ). For any (i, j, ℓ) and (i′, j′, ℓ′)

such that i 6= j 6= ℓ and i′ 6= j′ 6= ℓ′, let a
(i,j,ℓ)
(i′,j′),ℓ′ = I{(i′, j′, ℓ′) ∈ S(i, j, ℓ)}. For given (i, j, ℓ)

such that i 6= j 6= ℓ, we set a
(i,j,ℓ)
(i′,j′),ℓ′

= 0 if ℓ′ ∈ {i′, j′}. Write

a
(i,j,ℓ)
(i′,j′) = {a

(i,j,ℓ)
(i′,j′),1, . . . , a

(i,j,ℓ)
(i′,j′),p}

⊤

and define

c(i,j),ℓ(t) = {c(i,j),ℓ1 (t), . . . , c(i,j),ℓp (t)}⊤ :=
∑

i′,j′: i′ 6=j′

c(i′,j′)(t) ◦ a(i,j,ℓ)(i′,j′)
,

where ◦ denotes the Hadamard product. Let

c−(i,j),ℓ(t) = c(t)− c(i,j),ℓ(t) .

We can see that c−(i,j),ℓ(t) is independent of {Z̊i,ℓ, Z̊ℓ,j, Z̊i,j}. By Taylor expansion,

∫ 1

0
E
[
qℓ{c(t)}ċ(i,j),ℓ(t)

]
dt=

∫ 1

0
E
[
qℓ{c−(i,j),ℓ(t)}ċ(i,j),ℓ(t)

]
dt

︸ ︷︷ ︸
I1(i,j,ℓ)

+

p∑

k=1

∫ 1

0
E
[
qℓk{c−(i,j),ℓ(t)}ċ(i,j),ℓ(t)c(i,j),ℓk (t)

]
dt

︸ ︷︷ ︸
I2(i,j,ℓ,k)
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+

p∑

k,l=1

∫ 1

0

∫ 1

0
(1− τ)E

[
qℓkl{c−(i,j),ℓ(t) + τc(i,j),ℓ(t)}

× ċ(i,j),ℓ(t)c(i,j),ℓk (t)c
(i,j),ℓ
l (t)

]
dτdt

︸ ︷︷ ︸
I3(i,j,ℓ,k,l)

.

Together with (S.G.18), we have

2E(T ) =
∑

i,j,ℓ: i 6=j 6=ℓ

I1(i, j, ℓ) +
∑

i,j,ℓ: i 6=j 6=ℓ

p∑

k=1

I2(i, j, ℓ, k)

+
∑

i,j,ℓ: i 6=j 6=ℓ

∑

k:k 6=ℓ

p∑

l=1

I3(i, j, ℓ, k, l) +
∑

i,j,ℓ: i 6=j 6=ℓ

p∑

l=1

I3(i, j, ℓ, ℓ, l) .

As shown in Sections G.6–G.8, it holds that
∑

i,j,ℓ: i 6=j 6=ℓ

I1(i, j, ℓ) = 0 ,(S.G.19)

∑

i,j,ℓ: i 6=j 6=ℓ

p∑

k=1

|I2(i, j, ℓ, k)|. p−1/2φ3 log7/2 p ,(S.G.20)

∑

i,j,ℓ: i 6=j 6=ℓ

p∑

k,l=1

|I3(i, j, ℓ, k, l)|. p−1/2φ3 log7/2 p .(S.G.21)

Then supv∈[0,1] |E(T )|. p−1/2φ3 log7/2 p. We complete the proof of Lemma 5. ✷

G.6. Proof of (S.G.19). To simplify the notation and without causing much confusion,

we write c(t), c−(i,j),ℓ(t), c
(i,j),ℓ
k (t), c(i,j),ℓ(t) and ċ(i,j),ℓ(t) as c, c−(i,j),ℓ, c

(i,j),ℓ
k , c(i,j),ℓ and

ċ(i,j),ℓ, respectively. Recall

qℓ{c−(i,j),ℓ}ċ(i,j),ℓ =
qℓ{c−(i,j),ℓ}√

N

[
1√
t
{√vY(i,j),ℓ +

√
1− vV(i,j),ℓ} −

1√
1− tW(i,j),ℓ

]
.

Since Y(i,j),ℓ is independent of c−(i,j),ℓ, then

E
[
qℓ{c−(i,j),ℓ}Y(i,j),ℓ

]
= 0 .

Notice that V(i′,j′),ℓ′ with i′ 6= j′ 6= ℓ′ included in c−(i,j),ℓ satisfies |{i′, j′, ℓ′} ∩ {i, j, ℓ}| ≤
1. It follows from (S.G.13), (S.G.14) and (S.G.15) that Cov{Y(i′,j′),ℓ′ , Y(i,j),ℓ} = 0 for

any i′ 6= j′ 6= ℓ′ such that |{i′, j′, ℓ′} ∩ {i, j, ℓ}| ≤ 1. Since Cov{V(i′,j′),ℓ′ , V(i,j),ℓ} =
Cov{Y(i′,j′),ℓ′ , Y(i,j),ℓ}, then Cov{V(i′,j′),ℓ′ , V(i,j),ℓ} = 0 for any i′ 6= j′ 6= ℓ′ such that

|{i′, j′, ℓ′}∩{i, j, ℓ}| ≤ 1. Recall that {V(i,j),ℓ}i,j,ℓ: i 6=j 6=ℓ are normal random variables. There-

fore, V(i,j),ℓ is independent of c−(i,j),ℓ. Then

E
[
qℓ{c−(i,j),ℓ}V(i,j),ℓ

]
= 0 .

Analogously, we also have E[qℓ{c−(i,j),ℓ}W(i,j),ℓ] = 0. Hence, I1(i, j, ℓ)≡ 0 for any i 6= j 6=
ℓ. We complete the proof of (S.G.19). ✷
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G.7. Proof of (S.G.20). To simplify the notation and without causing much confusion,

we write c(t), c−(i,j),ℓ(t), c
(i,j),ℓ
k (t), c(i,j),ℓ(t) and ċ(i,j),ℓ(t) as c, c−(i,j),ℓ, c

(i,j),ℓ
k , c(i,j),ℓ and

ċ(i,j),ℓ, respectively. Due to c
(i,j),ℓ
k =

∑
i′,j′: i′ 6=j′ c(i′,j′),ka

(i,j,ℓ)
(i′,j′),k, then

(S.G.22) I2(i, j, ℓ, k) =
∑

i′,j′: i′ 6=j′

∫ 1

0
E
[
qℓk{c−(i,j),ℓ}ċ(i,j),ℓc(i′,j′),ka(i,j,ℓ)(i′,j′),k

]
dt .

Notice that

∑

i,j,ℓ: i 6=j 6=ℓ

p∑

k=1

|I2(i, j, ℓ, k)|=
∑

i,j,ℓ: i 6=j 6=ℓ

∑

k:k 6=i,j,ℓ

|I2(i, j, ℓ, k)|+
∑

i,j,ℓ: i 6=j 6=ℓ

|I2(i, j, ℓ, i)|

+
∑

i,j,ℓ: i 6=j 6=ℓ

|I2(i, j, ℓ, j)|+
∑

i,j,ℓ: i 6=j 6=ℓ

|I2(i, j, ℓ, ℓ)| .

As we will show in Sections G.7.1 and G.7.2, it holds that

∑

i,j,ℓ: i 6=j 6=ℓ

∑

k:k 6=i,j,ℓ

|I2(i, j, ℓ, k)|.
φ3 log7/2 p

p1/2
,(S.G.23)

∑

i,j,ℓ: i 6=j 6=ℓ

{
|I2(i, j, ℓ, i)|+ |I2(i, j, ℓ, j)|+ |I2(i, j, ℓ, ℓ)|

}
.
φ3 log7/2 p

p1/2
.(S.G.24)

G.7.1. Case 1: k 6= i, j, ℓ. Note that i′ 6= j′ and k 6= i, j, ℓ. Due to a
(i,j,ℓ)
(i′,j′),k = I{(i′, j′, k) ∈

S(i, j, ℓ)} for k /∈ {i′, j′} and a
(i,j,ℓ)
(i′,j′),k = 0 for k ∈ {i′, j′}, then a

(i,j,ℓ)
(i′,j′),k = 1 if and only if

{i′, j′} ⊂ {i, j, ℓ}. It follows from (S.G.22) that

I2(i, j, ℓ, k)

=

∫ 1

0
E
[
qℓk{c−(i,j),ℓ}ċ(i,j),ℓc(i,ℓ),k

]
dt+

∫ 1

0
E
[
qℓk{c−(i,j),ℓ}ċ(i,j),ℓc(ℓ,i),k

]
dt

+

∫ 1

0
E
[
qℓk{c−(i,j),ℓ}ċ(i,j),ℓc(i,j),k

]
dt+

∫ 1

0
E
[
qℓk{c−(i,j),ℓ}ċ(i,j),ℓc(j,i),k

]
dt

(S.G.25)

+

∫ 1

0
E
[
qℓk{c−(i,j),ℓ}ċ(i,j),ℓc(j,ℓ),k

]
dt+

∫ 1

0
E
[
qℓk{c−(i,j),ℓ}ċ(i,j),ℓc(ℓ,j),k

]
dt .

Notice that

ċ(i,j),ℓc(i,ℓ),k =
1

N

[
1√
t
{√vY(i,j),ℓ +

√
1− vV(i,j),ℓ} −

1√
1− tW(i,j),ℓ

]

×
[√
t{√vY(i,ℓ),k +

√
1− vV(i,ℓ),k}+

√
1− tW(i,ℓ),k

]
.

As shown in Section G.6, {Y(i,j),ℓ, V(i,j),ℓ,W(i,j),ℓ} is independent of c−(i,j),ℓ. Then

N ·E
[
qℓk{c−(i,j),ℓ}ċ(i,j),ℓc(i,ℓ),k

]

= vE
[
qℓk{c−(i,j),ℓ}Y(i,j),ℓY(i,ℓ),k

]
+ (1− v)E

[
qℓk{c−(i,j),ℓ}V(i,j),ℓV(i,ℓ),k

]

−E
[
qℓk{c−(i,j),ℓ}W(i,j),ℓW(i,ℓ),k

]
.

(S.G.26)
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Recall Y(i,ℓ),k is a function of {Z̊i,k, Z̊k,ℓ, Z̊i,ℓ}, and c−(i,j),ℓ is independent of Z̊i,ℓ. We will

remove the components in c−(i,j),ℓ that depend on Z̊i,k and Z̊k,ℓ. As we have shown that Z̊i,j

is independent of {Y(i′,j′),ℓ′}(i′,j′,ℓ′)/∈S∗(i,j) for any given i and j, we define

c(i,j),ℓ,(i,ℓ),k =
∑

i′,j′: i′ 6=j′

c(i′,j′) ◦
{
a
(i,j,ℓ)
(i′,j′) + a

(i,k)
(i′,j′) + a

(k,ℓ)
(i′,j′) − a

(i,j,ℓ)
(i′,j′) ◦ a

(i,k)
(i′,j′)

− a
(i,j,ℓ)
(i′,j′) ◦ a

(k,ℓ)
(i′,j′) − a

(i,k)
(i′,j′) ◦ a

(k,ℓ)
(i′,j′) + a

(i,j,ℓ)
(i′,j′) ◦ a

(i,k)
(i′,j′) ◦ a

(k,ℓ)
(i′,j′)

}
,

where a
(i,j)
(i′,j′) = {a

(i,j)
(i′,j′),1, . . . , a

(i,j)
(i′,j′),p}⊤ with a

(i,j)
(i′,j′),ℓ′ = I{(i′, j′, ℓ′) ∈ S∗(i, j)} for ℓ′ 6=

i′, j′ and a
(i,j)
(i′,j′),ℓ′ = 0 for ℓ′ ∈ {i′, j′}. Therefore, we know {Y(i,j),ℓ, Y(i,ℓ),k} is independent

of c− c(i,j),ℓ,(i,ℓ),k. Recall c(i,j),ℓ =
∑

i′,j′: i′ 6=j′ c(i′,j′) ◦ a
(i,j,ℓ)
(i′,j′). Then

c(i,j),ℓ,(i,ℓ),k − c(i,j),ℓ

= {c(i,k) + c(k,i) + c(ℓ,k) + c(k,ℓ)} ◦ (1− ei − ej − ek − eℓ)

+
∑

m6=i,j,ℓ,k

{c(k,m),i + c(m,k),i}ei +
∑

m6=i,j,ℓ,k

{c(k,m),ℓ + c(m,k),ℓ}eℓ(S.G.27)

+
∑

m6=i,j,ℓ,k

{c(i,m),k + c(m,i),k + c(ℓ,m),k + c(m,ℓ),k}ek ,

where 1 is a p-dimensional vector with all components being 1, and es is a p-dimensional

vector with the s-th component being 1 and other components being 0. Let

c−(i,j),ℓ,(i,ℓ),k = c− c(i,j),ℓ,(i,ℓ),k .

Recall c−(i,j),ℓ = c− c(i,j),ℓ. Then

c(i,j),ℓ,(i,ℓ),k−(i,j),ℓ := c−(i,j),ℓ − c−(i,j),ℓ,(i,ℓ),k = c(i,j),ℓ,(i,ℓ),k − c(i,j),ℓ .

Write c(i,j),ℓ,(i,ℓ),k−(i,j),ℓ = {c(i,j),ℓ,(i,ℓ),k−(i,j),ℓ
1 , . . . , c

(i,j),ℓ,(i,ℓ),k−(i,j),ℓ
p }⊤. Since {Y(i,j),ℓ, Y(i,ℓ),k}

is independent of c−(i,j),ℓ,(i,ℓ),k, by Taylor expansion, it holds that

E
[
qℓk{c−(i,j),ℓ}Y(i,j),ℓY(i,ℓ),k

]
= E

[
qℓk{c−(i,j),ℓ,(i,ℓ),k}

]
E
{
Y(i,j),ℓY(i,ℓ),k

}

+

p∑

m=1

∫ 1

0
E
[
qℓkm{c−(i,j),ℓ,(i,ℓ),k + τc(i,j),ℓ,(i,ℓ),k−(i,j),ℓ}

× Y(i,j),ℓY(i,ℓ),kc(i,j),ℓ,(i,ℓ),k−(i,j),ℓ
m

]
dτ .

Notice that for any V(i′,j′),ℓ′ and W(i′,j′),ℓ′ with i′ 6= j′ 6= ℓ′ included in c−(i,j),ℓ,(i,ℓ),k,

Cov{V(i,j),ℓ, V(i′,j′),ℓ′}=Cov{W(i,j),ℓ,W(i′,j′),ℓ′}=Cov{Y(i,j),ℓ, Y(i′,j′),ℓ′}= 0 ,

Cov{V(i,ℓ),k, V(i′,j′),ℓ′}=Cov{W(i,ℓ),k,W(i′,j′),ℓ′}=Cov{Y(i,ℓ),k, Y(i′,j′),ℓ′}= 0 .

Since V(i,j),ℓ, V(i,ℓ),k,W(i,j),ℓ andW(i,ℓ),k are normal random variables, then {V(i,j),ℓ, V(i,ℓ),k,
W(i,j),ℓ,W(i,ℓ),k} is independent of c−(i,j),ℓ,(i,ℓ),k. Analogously, we also have

E
[
qℓk{c−(i,j),ℓ}V(i,j),ℓV(i,ℓ),k

]
= E

[
qℓk{c−(i,j),ℓ,(i,ℓ),k}

]
E
{
V(i,j),ℓV(i,ℓ),k

}

+

p∑

m=1

∫ 1

0
E
[
qℓkm{c−(i,j),ℓ,(i,ℓ),k + τc(i,j),ℓ,(i,ℓ),k−(i,j),ℓ}
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× V(i,j),ℓV(i,ℓ),kc(i,j),ℓ,(i,ℓ),k−(i,j),ℓ
m

]
dτ ,

E
[
qℓk{c−(i,j),ℓ}W(i,j),ℓW(i,ℓ),k

]
= E

[
qℓk{c−(i,j),ℓ,(i,ℓ),k}

]
E
{
W(i,j),ℓW(i,ℓ),k

}

+

p∑

m=1

∫ 1

0
E
[
qℓkm{c−(i,j),ℓ,(i,ℓ),k + τc(i,j),ℓ,(i,ℓ),k−(i,j),ℓ}

×W(i,j),ℓW(i,ℓ),kc
(i,j),ℓ,(i,ℓ),k−(i,j),ℓ
m

]
dτ .

Recall E{Y(i,j),ℓY(i,ℓ),k} = E{V(i,j),ℓV(i,ℓ),k} = E{W(i,j),ℓW(i,ℓ),k}. Then (S.G.26) implies

that

N ·E
[
qℓk{c−(i,j),ℓ}ċ(i,j),ℓc(i,ℓ),k

]

=

p∑

m=1

∫ 1

0
E
[
qℓkm{c−(i,j),ℓ,(i,ℓ),k + τc(i,j),ℓ,(i,ℓ),k−(i,j),ℓ}c(i,j),ℓ,(i,ℓ),k−(i,j),ℓ

m(S.G.28)

× {vY(i,j),ℓY(i,ℓ),k + (1− v)V(i,j),ℓV(i,ℓ),k −W(i,j),ℓW(i,ℓ),k}
]
dτ .

Define

E1 =
{
|Y(i,j),ℓ| ∨ |V(i,j),ℓ| ∨ |W(i,j),ℓ| ≤B for any i 6= j 6= ℓ

}

for some B > 0 that will be specified later. Write ν = pγ−2 + γ−6. Then ν ≍maxs∈[p] νs ≍
mins∈[p] νs. Recall Var{V(i,j),ℓ} = Var{W(i,j),ℓ} = Var{Y(i,j),ℓ}. As shown in Section

G.4.1, Var{V(i,j),ℓ} ≍ ν−1γ−6 ≍ Var{W(i,j),ℓ}. Since V(i,j),ℓ and W(i,j),ℓ are normal ran-

dom variables with mean zero, then

max
i,j,ℓ: i 6=j 6=ℓ

|V(i,j),ℓ|= ν−1/2γ−3 ·Op(log
1/2 p) = max

i,j,ℓ: i 6=j 6=k
|W(i,j),ℓ| .

Notice that maxi,j,ℓ: i 6=j 6=ℓ |Y(i,j),ℓ|. ν−1/2γ−3. Recall ν = pγ−2+γ−6. Then ν−1/2γ−3 . 1.

Selecting B =C∗ log
1/2 p for a sufficiently large constant C∗ > 0, then P(Ec1). p−C , where

C > 0 can be sufficiently large if we select a sufficiently large C∗. For given (i, j, ℓ, k) such

that i 6= j 6= ℓ 6= k, restricted on E1, it holds that

|c(i,j),ℓ|∞ ≤
60B√
N

+
∑

s1,s2:s1 6=s2
s1,s2∈{i,j,ℓ}

∣∣∣∣
1√
N

∑

m6=i,j,ℓ,k

Y(s1,m),s2

∣∣∣∣

+
∑

s1,s2: s1 6=s2
s1,s2∈{i,j,ℓ}

∣∣∣∣
1√
N

∑

m6=i,j,ℓ,k

Y(m,s1),s2

∣∣∣∣

+
∑

s1,s2: s1 6=s2
s1,s2∈{i,j,ℓ}

∣∣∣∣
1√
N

∑

m6=i,j,ℓ,k

V(s1,m),s2

∣∣∣∣(S.G.29)

+
∑

s1,s2: s1 6=s2
s1,s2∈{i,j,ℓ}

∣∣∣∣
1√
N

∑

m6=i,j,ℓ,k

V(m,s1),s2

∣∣∣∣

+
∑

s1,s2: s1 6=s2
s1,s2∈{i,j,ℓ}

∣∣∣∣
1√
N

∑

m6=i,j,ℓ,k

W(s1,m),s2

∣∣∣∣

+
∑

s1,s2: s1 6=s2
s1,s2∈{i,j,ℓ}

∣∣∣∣
1√
N

∑

m6=i,j,ℓ,k

W(m,s1),s2

∣∣∣∣ ,
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|c(i,j),ℓ,(i,ℓ),k−(i,j),ℓ|∞ ≤
24B√
N

+
∑

s1,s2:s1 6=s2
s1,s2∈{i,ℓ,k}

∣∣∣∣
1√
N

∑

m:m6=i,j,ℓ,k

Y(s1,m),s2

∣∣∣∣

+
∑

s1,s2: s1 6=s2
s1,s2∈{i,ℓ,k}

∣∣∣∣
1√
N

∑

m:m6=i,j,ℓ,k

Y(m,s1),s2

∣∣∣∣

+
∑

s1,s2: s1 6=s2
s1,s2∈{i,ℓ,k}

∣∣∣∣
1√
N

∑

m:m6=i,j,ℓ,k

V(s1,m),s2

∣∣∣∣

+
∑

s1,s2: s1 6=s2
s1,s2∈{i,ℓ,k}

∣∣∣∣
1√
N

∑

m:m6=i,j,ℓ,k

V(m,s1),s2

∣∣∣∣(S.G.30)

+
∑

s1,s2: s1 6=s2
s1,s2∈{i,ℓ,k}

∣∣∣∣
1√
N

∑

m:m6=i,j,ℓ,k

W(s1,m),s2

∣∣∣∣

+
∑

s1,s2: s1 6=s2
s1,s2∈{i,ℓ,k}

∣∣∣∣
1√
N

∑

m:m6=i,j,ℓ,k

W(m,s1),s2

∣∣∣∣ ,

which implies that

|c(i,j),ℓ − (τ − 1)c(i,j),ℓ,(i,ℓ),k−(i,j),ℓ|∞

≤ 24 max
s1,s2:s1 6=s2

s1,s2∈{i,j,ℓ,k}

{∣∣∣∣
1√
N

∑

m6=i,j,ℓ,k

Y(s1,m),s2

∣∣∣∣+
∣∣∣∣

1√
N

∑

m6=i,j,ℓ,k

Y(m,s1),s2

∣∣∣∣
}

+24 max
s1,s2: s1 6=s2

s1,s2∈{i,j,ℓ,k}

{∣∣∣∣
1√
N

∑

m6=i,j,ℓ,k

V(s1,m),s2

∣∣∣∣+
∣∣∣∣

1√
N

∑

m6=i,j,ℓ,k

V(m,s1),s2

∣∣∣∣
}(S.G.31)

+24 max
s1,s2: s1 6=s2

s1,s2∈{i,j,ℓ,k}

{∣∣∣∣
1√
N

∑

m6=i,j,ℓ,k

W(s1,m),s2

∣∣∣∣+
∣∣∣∣

1√
N

∑

m6=i,j,ℓ,k

W(m,s1),s2

∣∣∣∣
}

+
84B√
N

under E1. Given s1, s2 ∈ {i, j, ℓ, k} such that s1 6= s2, we have

1√
N

∑

m6=i,j,ℓ,k

Y(s1,m),s2 =− ν−1/2
s2

(
µs2,1 + µs2,2
2µs2,1µs2,2

)
1√
N

∑

m6=i,j,ℓ,k

Z̊s1,s2Z̊s2,mZ̊s1,m

+
p− 4√
N
ν−1/2
s2 λs1,s2Z̊s1,s2 .

Recall that maxs∈[p],k∈{1,2}µs,k ≍ γ3 ≍mins∈[p],k∈{1,2}µs,k, maxs1,s2: s1 6=s2 λs1,s2 ≍ γ−1 ≍
mins1,s2: s1 6=s2 λs1,s2 , maxs∈[p] νs ≍ ν ≍ mins∈[p] νs with ν = pγ−2 + γ−6, and N = (p −
1)(p− 2). Then

∣∣∣∣
1√
N

∑

m6=i,j,ℓ,k

Y(s1,m),s2

∣∣∣∣.
1

ν1/2γ3

∣∣∣∣
1√
N

∑

m6=i,j,ℓ,k

Z̊s2,mZ̊s1,m

∣∣∣∣+
1

ν1/2γ
.
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Notice that ν−1/2γ−1 . p−1/2, ν−1/2γ−3 . 1 and {Z̊s1,mZ̊s2,m}m6=i,j,k,ℓ is an independent

sequence with mean zero. By Bernstein inequality,

P

(∣∣∣∣
1√
N

∑

m6=i,j,ℓ,k

Z̊s2,mZ̊s1,m

∣∣∣∣> u

)
. exp(−Cpu2)

for any u= o(1), which implies

max
i,j,ℓ,k: i 6=j 6=ℓ 6=k

max
s1,s2:s1 6=s2

s1,s2∈{i,j,ℓ,k}

∣∣∣∣
1√
N

∑

m6=i,j,ℓ,k

Y(s1,m),s2

∣∣∣∣

≤ C

ν1/2γ
+

1

ν1/2γ3
·Op

(
log1/2 p

p1/2

)
=Op

(
log1/2 p

p1/2

)
.(S.G.32)

Analogously, we also have

max
i,j,ℓ,k: i 6=j 6=ℓ 6=k

max
s1,s2:s1 6=s2

s1,s2∈{i,j,ℓ,k}

∣∣∣∣
1√
N

∑

m6=i,j,ℓ,k

Y(m,s1),s2

∣∣∣∣=Op

(
log1/2 p

p1/2

)
.

Note that Cov{V(i1,j1),ℓ1 , V(i2,j2),ℓ2} = Cov{Y(i1,j1),ℓ1 , Y(i2,j2),ℓ2}. As shown in Sections

G.4.1 and G.4.2, we have

Cov{V(s1,m),s2 , V(s1,m),s2}=
1

νs2

(
µs2,1 + µs2,2
2µs2,1µs2,2

)2

Var(Zs1,s2)Var(Zs2,m)Var(Zs1,m)

+
λ2s1,s2
νs2

Var(Zs1,s2)

and Cov{V(s1,m),s2 , V(s1,m′),s2}= ν−1
s2 λ

2
s1,s2Var(Zs1,s2) for any m 6=m′. Recall ν = pγ−2 +

γ−6. Then

Var

{ ∑

m6=i,j,ℓ,k

V(s1,m),s2

}
≍ p

νγ2

(
1

γ4
+ p

)
≍ p .

Since {V(s1,m),s2}m6=i,j,ℓ,k are normal random variables with mean zero, then it holds that

N−1/2
∑

m6=i,j,ℓ,k V(s1,m),s2 is also a normal random variable with mean zero and variance

N−1Var{∑m6=i,j,ℓ,k V(s1,m),s2} ≍ p−1. Therefore,

max
i,j,ℓ,k: i 6=j 6=ℓ 6=k

max
s1,s2:s1 6=s2

s1,s2∈{i,j,ℓ,k}

∣∣∣∣
1√
N

∑

m6=i,j,ℓ,k

V(s1,m),s2

∣∣∣∣=Op

(
log1/2 p

p1/2

)
.(S.G.33)

Also, as shown in Section G.4.3, Cov{V(m,s1),s2 , V(m′,s1),s2}=Cov{Y(m,s1),s2 , Y(m′,s1),s2}=
0 for any m 6=m′ and m,m′ /∈ {i, j, ℓ, k}. Then N−1/2

∑
m6=i,j,ℓ,k V(m,s1),s2 is a normal ran-

dom variable with mean zero and variance N−1
∑

m6=i,j,ℓ,kVar{V(m,s1),s2} ≍ p−1ν−1γ−6.

Notice that ν ≍ pγ−2 + γ−6. Then N−1
∑

m6=i,j,ℓ,kVar{V(m,s1),s2}. p−1, which implies

max
i,j,ℓ,k: i 6=j 6=ℓ 6=k

max
s1,s2:s1 6=s2

s1,s2∈{i,j,ℓ,k}

∣∣∣∣
1√
N

∑

m6=i,j,ℓ,k

V(m,s1),s2

∣∣∣∣=Op

(
log1/2 p

p1/2

)
.(S.G.34)

Identically,

max
i,j,ℓ,k: i 6=j 6=ℓ 6=k

max
s1,s2:s1 6=s2

s1,s2∈{i,j,ℓ,k}

∣∣∣∣
1√
N

∑

m6=i,j,ℓ,k

W(s1,m),s2

∣∣∣∣
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=Op

(
log1/2 p

p1/2

)
= max

i,j,ℓ,k: i 6=j 6=ℓ 6=k
max

s1,s2:s1 6=s2
s1,s2∈{i,j,ℓ,k}

∣∣∣∣
1√
N

∑

m6=i,j,ℓ,k

W(m,s1),s2

∣∣∣∣ .

Define

E2(Y ) =

{
max

s1,s2:s1 6=s2
s1,s2∈{i,j,ℓ,k}

∣∣∣∣
1√
N

∑

m6=i,j,ℓ,k

Y(s1,m),s2

∣∣∣∣≤
C∗∗ log

1/2 p

p1/2
and

max
s1,s2:s1 6=s2

s1,s2∈{i,j,ℓ,k}

∣∣∣∣
1√
N

∑

m6=i,j,ℓ,k

Y(m,s1),s2

∣∣∣∣≤
C∗∗ log

1/2 p

p1/2
for any i 6= j 6= ℓ 6= k

}

for some sufficiently large constant C∗∗ > 0. We can also define E2(V ) and E2(W ) in the

same manner. Let

(S.G.35) E2 = E2(Y )∩ E2(V )∩ E2(W ) .

Then P(Ec2) . p−C , where C can be sufficiently large if we select a sufficiently large C∗∗.

Recall B =C∗ log
1/2 p. Restricted on E1 ∩ E2, by (S.G.31), we have

max
i,j,ℓ,k: i 6=j 6=ℓ 6=k

|c(i,j),ℓ− (τ − 1)c(i,j),ℓ,(i,ℓ),k−(i,j),ℓ|∞ ≤
84C∗ log

1/2 p

N1/2
+

144C∗∗ log
1/2 p

p1/2
.

As p→∞, if φ≪ p1/2(log p)−3/2, it holds that

84C∗ log
1/2 p

N1/2
+

144C∗∗ log
1/2 p

p1/2
<

3

4β

with β = φ log p, which implies that

(S.G.36) max
i,j,ℓ,k: i 6=j 6=ℓ 6=k

|c(i,j),ℓ − (τ − 1)c(i,j),ℓ,(i,ℓ),k−(i,j),ℓ|∞ <
3

4β

under E1 ∩ E2.

As shown in Lemma A.5 of Chernozhukov, Chetverikov and Kato (2013), there exists

Uℓkm(v) such that |qℓkm(v)| ≤ Uℓkm(v) for any v ∈ Rp, where
∑p

ℓ,k,m=1Uℓkm(v) . φβ2

for any v ∈Rp. Thus, (S.G.28) leads to
∑

ℓ 6=i,j

∑

k 6=i,j,ℓ

∣∣N ·E
[
qℓk{c−(i,j),ℓ}ċ(i,j),ℓc(i,ℓ),k

]∣∣. Ti,j,1 + Ti,j,2(S.G.37)

with

Ti,j,1 = (log p)
∑

ℓ 6=i,j

∑

k 6=i,j,ℓ

p∑

m=1

∫ 1

0
E
[
Uℓkm{c−(i,j),ℓ,(i,ℓ),k + τc(i,j),ℓ,(i,ℓ),k−(i,j),ℓ}

× |c(i,j),ℓ,(i,ℓ),k−(i,j),ℓ
m | · I(E1 ∩ E2)

]
dτ ,

Ti,j,2 =
∑

ℓ 6=i,j

∑

k 6=i,j,ℓ

p∑

m=1

∫ 1

0
E
[
I(Ec1 ∪ Ec2) ·Uℓkm{c−(i,j),ℓ,(i,ℓ),k + τc(i,j),ℓ,(i,ℓ),k−(i,j),ℓ}

× {|Y(i,j),ℓ||Y(i,ℓ),k|+ |V(i,j),ℓ||V(i,ℓ),k|+ |W(i,j),ℓ||W(i,ℓ),k|}

× |c(i,j),ℓ,(i,ℓ),k−(i,j),ℓ
m |

]
dτ .
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Due to c−(i,j),ℓ,(i,ℓ),k + τc(i,j),ℓ,(i,ℓ),k−(i,j),ℓ = c − c(i,j),ℓ + (τ − 1)c(i,j),ℓ,(i,ℓ),k−(i,j),ℓ, to-

gether with (S.G.36), Lemma A.6 of Chernozhukov, Chetverikov and Kato (2013) implies

that, restricted on E1 ∩ E2,

Uℓkm(c). Uℓkm{c−(i,j),ℓ,(i,ℓ),k + τc(i,j),ℓ,(i,ℓ),k−(i,j),ℓ}. Uℓkm(c)

for any τ ∈ [0,1]. Thus,

Ti,j,1 . φβ2(log p)E

{
I(E1 ∩ E2) max

k,ℓ:k 6=ℓ
|c(i,j),ℓ,(i,ℓ),k−(i,j),ℓ|∞

}
.

Restricted on E1 ∩ E2, it follows from (S.G.30) that

max
k,ℓ:k 6=ℓ

|c(i,j),ℓ,(i,ℓ),k−(i,j),ℓ|∞ ≤
24C∗ log

1/2 p

p1/2
+

6C∗∗ log
1/2 p

p1/2
,

which implies

(S.G.38) Ti,j,1 .
φβ2 log3/2 p

p1/2
.

For Ti,j,2, due to Uℓkm{c−(i,j),ℓ,(i,ℓ),k(t) + τc(i,j),ℓ,(i,ℓ),k−(i,j),ℓ(t)} . φβ2, by Cauchy-

Schwarz inequality, it holds that

Ti,j,2 . φβ2
∑

ℓ 6=i,j

∑

k 6=i,j,ℓ

p∑

m=1

E
[
I(Ec1 ∪ Ec2)|c(i,j),ℓ,(i,ℓ),k−(i,j),ℓ

m |

× {|Y(i,j),ℓ||Y(i,ℓ),k|+ |V(i,j),ℓ||V(i,ℓ),k|+ |W(i,j),ℓ||W(i,ℓ),k|}
]

. p3φβ2P1/2(Ec1 ∪ Ec2)

× max
ℓ,k: ℓ 6=k

E
1/2

[
|c(i,j),ℓ,(i,ℓ),k−(i,j),ℓ|2∞{|Y(i,j),ℓ|2|Y(i,ℓ),k|2 + |V(i,j),ℓ|2|V(i,ℓ),k|2

+ |W(i,j),ℓ|2|W(i,ℓ),k|2}
]

. p3φβ2P1/2(Ec1 ∪ Ec2) max
ℓ,k: ℓ 6=k

E
1/4

{
|c(i,j),ℓ,(i,ℓ),k−(i,j),ℓ|4∞

}
E
1/8{|Y(i,j),ℓ|8}

×E
1/8{|Y(i,ℓ),k|8}

+ p3φβ2P1/2(Ec1 ∪ Ec2) max
ℓ,k: ℓ 6=k

E
1/4

{
|c(i,j),ℓ,(i,ℓ),k−(i,j),ℓ|4∞

}
E
1/8{|V(i,j),ℓ|8}

×E
1/8{|V(i,ℓ),k|8} ,

where the last step is based on the fact {V(i,j),ℓ, V(i,ℓ),k} and {W(i,j),ℓ,W(i,ℓ),k} are identi-

cally distributed. Notice that maxi,j,ℓ: i 6=j 6=ℓ |Y(i,j),ℓ|. ν−1/2γ−3 . 1 and V(i,j),ℓ is a normal

distributed random variable with Var{V(i,j),ℓ} ≍ ν−1γ−6 . 1. Thus

Ti,j,2 . p3φβ2P1/2(Ec1 ∪ Ec2) max
ℓ,k: ℓ 6=k

E
1/4

{
|c(i,j),ℓ,(i,ℓ),k−(i,j),ℓ|4∞

}
.

By (S.G.27), following the same arguments for (S.G.32), (S.G.33) and (S.G.34), we have

max
ℓ,k: ℓ 6=k

E
1/4

{
|c(i,j),ℓ,(i,ℓ),k−(i,j),ℓ|4∞

}
. 1 ,

which implies Ti,j,2 . p3φβ2P1/2(Ec1 ∪ Ec2). Recall P(Ec1 ∪ Ec2) . p−C and C can be suffi-

ciently large if we select two sufficiently large constants C∗ and C∗∗ in the definition of E1
and E2. Hence, with suitable selection of (C∗,C∗∗), we have

Ti,j,2 .
φβ2 log3/2 p

p1/2
.
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Together with (S.G.38), (S.G.37) implies that

∑

ℓ: ℓ 6=i,j

∑

k:k 6=i,j,ℓ

∣∣∣∣
∫ 1

0
E
[
qℓk{c−(i,j),ℓ}ċ(i,j),ℓc(i,ℓ),k

]
dt

∣∣∣∣.
φβ2 log3/2 p

p5/2

holds uniformly over (i, j) such that i 6= j. Following the same arguments, we can bound the

other terms in (S.G.25). Then

∑

ℓ: ℓ 6=i,j

∑

k:k 6=i,j,ℓ

|I2(i, j, ℓ, k)|.
φβ2 log3/2 p

p5/2

holds uniformly over (i, j) such that i 6= j. Since β = φ log p, we then have (S.G.23). ✷

G.7.2. Case 2: k = i, j, ℓ. We first consider the case with k = i. Notice that c(i′,j′),i = 0
if i′ = i or j′ = i. By (S.G.22), it holds that

I2(i, j, ℓ, i) =

∫ 1

0
E
[
qℓi{c−(i,j),ℓ}ċ(i,j),ℓc(ℓ,j),i

]
dt+

∫ 1

0
E
[
qℓi{c−(i,j),ℓ}ċ(i,j),ℓc(j,ℓ),i

]
dt

+
∑

m6=i,j,ℓ

∫ 1

0
E
[
qℓi{c−(i,j),ℓ}ċ(i,j),ℓc(m,j),i

]
dt

+
∑

m6=i,j,ℓ

∫ 1

0
E
[
qℓi{c−(i,j),ℓ}ċ(i,j),ℓc(m,ℓ),i

]
dt

+
∑

m6=i,j,ℓ

∫ 1

0
E
[
qℓi{c−(i,j),ℓ}ċ(i,j),ℓc(j,m),i

]
dt

+
∑

m6=i,j,ℓ

∫ 1

0
E
[
qℓi{c−(i,j),ℓ}ċ(i,j),ℓc(ℓ,m),i

]
dt .

Note that

ċ(i,j),ℓ =
1√
N

[
1√
t
{√vY(i,j),ℓ +

√
1− vV(i,j),ℓ} −

1√
1− tW(i,j),ℓ

]
,

c(j,ℓ),i =
1√
N

[√
t
{√

vY(j,ℓ),i +
√
1− vV(j,ℓ),i

}
+
√
1− tW(j,ℓ),i

]
.

As shown in Sections G.5 and G.6, {Y(i,j),ℓ, V(i,j),ℓ,W(i,j),ℓ} is independent of c−(i,j),ℓ. Fol-

lowing the same arguments in Section G.6 to show V(i,j),ℓ is independent of c−(i,j),ℓ, we

also know {V(j,ℓ),i,W(j,ℓ),i} is independent of c−(i,j),ℓ. Notice that Y(j,ℓ),i is a function of

(Z̊j,i, Z̊i,ℓ, Z̊j,ℓ) = (Z̊i,j , Z̊i,ℓ, Z̊ℓ,j) and Y(i,j),ℓ is a function of (Z̊i,j , Z̊i,ℓ, Z̊ℓ,j). Based on the

arguments to show Y(i,j),ℓ is independent of c−(i,j),ℓ, we know Y(j,ℓ),i is also independent of

c−(i,j),ℓ. Then

N ·E
[
qℓi{c−(i,j),ℓ}ċ(i,j),ℓc(j,ℓ),i

]

= vE
[
qℓi{c−(i,j),ℓ}

]
E{Y(i,j),ℓY(j,ℓ),i}+ (1− v)E

[
qℓi{c−(i,j),ℓ}

]
E{V(i,j),ℓV(j,ℓ),i}

− E
[
qℓi{c−(i,j),ℓ}

]
E{W(i,j),ℓW(j,ℓ),i}

= 0 .
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Analogously, we also have E[qℓi{c−(i,j),ℓ}ċ(i,j),ℓc(ℓ,j),i] = 0. Then

I2(i, j, ℓ, i) =
∑

m6=i,j,ℓ

∫ 1

0
E
[
qℓi{c−(i,j),ℓ}ċ(i,j),ℓc(m,j),i

]
dt

+
∑

m6=i,j,ℓ

∫ 1

0
E
[
qℓi{c−(i,j),ℓ}ċ(i,j),ℓc(m,ℓ),i

]
dt(S.G.39)

+
∑

m6=i,j,ℓ

∫ 1

0
E
[
qℓi{c−(i,j),ℓ}ċ(i,j),ℓc(j,m),i

]
dt

+
∑

m6=i,j,ℓ

∫ 1

0
E
[
qℓi{c−(i,j),ℓ}ċ(i,j),ℓc(ℓ,m),i

]
dt .

In the sequel, we only need to bound each term in (S.G.39). ForE[qℓi{c−(i,j),ℓ}ċ(i,j),ℓc(ℓ,m),i]
with m 6= i, j, ℓ, it holds that

N ·E
[
qℓi{c−(i,j),ℓ}ċ(i,j),ℓc(ℓ,m),i

]

= vE
[
qℓi{c−(i,j),ℓ}Y(i,j),ℓY(ℓ,m),i

]
+ (1− v)E

[
qℓi{c−(i,j),ℓ}V(i,j),ℓV(ℓ,m),i

]

−E
[
qℓi{c−(i,j),ℓ}W(i,j),ℓW(ℓ,m),i

]
.

Following the same arguments in Section G.6 to show V(i,j),ℓ is independent of c−(i,j),ℓ, we

also have {V(ℓ,m),i,W(ℓ,m),i} is independent of c−(i,j),ℓ. Thus,

N ·E
[
qℓi{c−(i,j),ℓ}ċ(i,j),ℓc(ℓ,m),i

]

= vE
[
qℓi{c−(i,j),ℓ}Y(i,j),ℓY(ℓ,m),i

]
− vE

[
qℓi{c−(i,j),ℓ}

]
E{Y(i,j),ℓY(ℓ,m),i} .(S.G.40)

Notice that Y(ℓ,m),i is a function of {Z̊ℓ,i, Z̊i,m, Z̊ℓ,m}, and c(i′,j′),ℓ′’s involving Z̊i,ℓ are not

included in c−(i,j),ℓ. Similar to the strategy used in Section G.7.1, we can remove c(i′,j′),ℓ′’s

that related to {Z̊ℓ,m, Z̊i,m} from c−(i,j),ℓ. Define

c(i,j),ℓ,(ℓ,m),i =
∑

i′,j′: i′ 6=j′

c(i′,j′) ◦
{
a
(i,j,ℓ)
(i′,j′) + a

(ℓ,m)
(i′,j′) + a

(i,m)
(i′,j′) − a

(i,j,ℓ)
(i′,j′) ◦ a

(ℓ,m)
(i′,j′)

− a
(i,j,ℓ)
(i′,j′) ◦ a

(i,m)
(i′,j′) − a

(ℓ,m)
(i′,j′) ◦ a

(i,m)
(i′,j′) + a

(i,j,ℓ)
(i′,j′) ◦ a

(ℓ,m)
(i′,j′) ◦ a

(i,m)
(i′,j′)

}

for a
(i,j,ℓ)
(i′,j′) and a

(i,j)
(i′,j′) specified, respectively, in Sections G.5 and G.7.1. Then {Y(i,j),ℓ, Y(ℓ,m),i}

is independent of c−(i,j),ℓ,(ℓ,m),i := c − c(i,j),ℓ,(ℓ,m),i. Let c(i,j),ℓ,(ℓ,m),i−(i,j),ℓ = c−(i,j),ℓ −
c−(i,j),ℓ,(ℓ,m),i. Then it holds that c(i,j),ℓ,(ℓ,m),i−(i,j),ℓ = c(i,j),ℓ,(ℓ,m),i− c(i,j),ℓ. Recall c(i,j),ℓ

=
∑

i′,j′: i′ 6=j′ c(i′,j′) ◦ a
(i,j,ℓ)
(i′,j′)

. We have

c(i,j),ℓ,(ℓ,m),i−(i,j),ℓ ={c(ℓ,m) + c(m,ℓ) + c(i,m) + c(m,i)} ◦ (1− ei− ej − eℓ − em)

+
∑

u 6=i,j,ℓ,m

{c(u,m),i + c(m,u),i}ei +
∑

u 6=i,j,ℓ,m

{c(u,m),ℓ + c(m,u),ℓ}eℓ

+
∑

u 6=i,j,ℓ,m

{c(u,ℓ),m + c(ℓ,u),m + c(u,i),m + c(i,u),m}em .
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Write c(i,j),ℓ,(ℓ,m),i−(i,j),ℓ = {c(i,j),ℓ,(ℓ,m),i−(i,j),ℓ
1 , . . . , c

(i,j),ℓ,(ℓ,m),i−(i,j),ℓ
p }⊤. By Taylor ex-

pansion,

E
[
qℓi{c−(i,j),ℓ}Y(i,j),ℓY(ℓ,m),i

]
= E

[
qℓi{c−(i,j),ℓ,(ℓ,m),i}

]
E{Y(i,j),ℓY(ℓ,m),i}

+

p∑

s=1

∫ 1

0
E
[
qℓis{c−(i,j),ℓ,(ℓ,m),i + τc(i,j),ℓ,(ℓ,m),i−(i,j),ℓ}

× Y(i,j),ℓY(ℓ,m),ic
(i,j),ℓ,(ℓ,m),i−(i,j),ℓ
s

]
dτ .

Together with (S.G.40), it holds that
∣∣N ·E

[
qℓi{c−(i,j),ℓ}ċ(i,j),ℓc(ℓ,m),i

]∣∣

≤
∣∣E

[
qℓi{c−(i,j),ℓ,(ℓ,m),i}

]
−E

[
qℓi{c−(i,j),ℓ}

]∣∣∣∣E{Y(i,j),ℓY(ℓ,m),i}
∣∣

︸ ︷︷ ︸
R1(i,j,ℓ,m)

+

p∑

s=1

∫ 1

0
E
[
|qℓis{c−(i,j),ℓ,(ℓ,m),i + τc(i,j),ℓ,(ℓ,m),i−(i,j),ℓ}|

× |Y(i,j),ℓ||Y(ℓ,m),i||c(i,j),ℓ,(ℓ,m),i−(i,j),ℓ
s |

]
dτ

︸ ︷︷ ︸
R2(i,j,ℓ,m)

.

Note that

c−(i,j),ℓ,(ℓ,m),i + τc(i,j),ℓ,(ℓ,m),i−(i,j),ℓ = c− c(i,j),ℓ + (τ − 1)c(i,j),ℓ,(ℓ,m),i−(i,j),ℓ .

Following the identical arguments in Section G.7.1 for bounding the term on the right-hand

side of (S.G.28), we have

∑

i: i 6=j,m

∑

ℓ: ℓ 6=i,j,m

R2(i, j, ℓ,m).
φβ2 log3/2 p

p1/2
.(S.G.41)

By Taylor expansion,

E
[
qℓi{c−(i,j),ℓ}

]
−E

[
qℓi{c−(i,j),ℓ,(ℓ,m),i}

]

=

p∑

s=1

∫ 1

0
E
[
qℓis{c−(i,j),ℓ,(ℓ,m),i + τc(i,j),ℓ,(ℓ,m),i−(i,j),ℓ}c(i,j),ℓ,(ℓ,m),i−(i,j),ℓ

s

]
dτ .

Parellel to (S.G.41), we also have

∑

i: i 6=j,m

∑

ℓ: ℓ 6=i,j,m

R1(i, j, ℓ,m).
φβ2 log3/2 p

p1/2
.

Therefore,

∑

i: i 6=j,m

∑

ℓ: ℓ 6=i,j,m

∣∣N ·E
[
qℓi{c−(i,j),ℓ}ċ(i,j),ℓc(ℓ,m),i

]∣∣. φβ2 log3/2 p

p1/2
,

which implies

∑

i,j,ℓ: i 6=j 6=ℓ

∣∣∣∣
∑

m6=i,j,ℓ

∫ 1

0
E
[
qℓi{c−(i,j),ℓ}ċ(i,j),ℓc(ℓ,m),i

]
dt

∣∣∣∣.
φβ2 log3/2 p

p1/2
.
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Analogously, we can obtain the same result for other terms in (S.G.39). Recall β = φ log p.

Hence, we have that

∑

i,j,ℓ: i 6=j 6=ℓ

|I2(i, j, ℓ, i)|.
φ3 log7/2 p

p1/2
.

Identically, we also have

∑

i,j,ℓ: i 6=j 6=ℓ

|I2(i, j, ℓ, j)|.
φ3 log7/2 p

p1/2
and

∑

i,j,ℓ: i 6=j 6=ℓ

|I2(i, j, ℓ, ℓ)|.
φ3 log7/2 p

p1/2
.

We complete the proof of (S.G.24). ✷

G.8. Proof of (S.G.21). To simplify the notation, we write c(t), c−(i,j),ℓ(t), c
(i,j),ℓ
k (t),

c(i,j),ℓ(t) and ċ(i,j),ℓ(t) as c, c−(i,j),ℓ, c
(i,j),ℓ
k , c(i,j),ℓ and ċ(i,j),ℓ, respectively. Define

E =
{
|Y(i,j),ℓ| ∨ |V(i,j),ℓ| ∨ |W(i,j),ℓ| ≤ p1/2/(4β) for any i 6= j 6= ℓ

}
.(S.G.42)

We then have

I3(i, j, ℓ, k, l) =

∫ 1

0

∫ 1

0
(1− τ)E

[
I(Ec)qℓkl{c−(i,j),ℓ + τc(i,j),ℓ}ċ(i,j),ℓc(i,j),ℓk c

(i,j),ℓ
l

]
dτdt

︸ ︷︷ ︸
I3,1(i,j,ℓ,k,l)

+

∫ 1

0

∫ 1

0
(1− τ)E

[
I(E)qℓkl{c−(i,j),ℓ + τc(i,j),ℓ}ċ(i,j),ℓc(i,j),ℓk c

(i,j),ℓ
l

]
dτdt

︸ ︷︷ ︸
I3,2(i,j,ℓ,k,l)

.

Let ω(t) = 1/(
√
t∧
√
1− t) for any t ∈ (0,1). Notice that

ċ(i,j),ℓ =
1√
N

[
1√
t
{√vY(i,j),ℓ +

√
1− vV(i,j),ℓ} −

1√
1− tW(i,j),ℓ

]
.

Then

max
i,j,ℓ: i 6=j 6=ℓ

|ċ(i,j),ℓ|.
ω(t)

p
max

i,j,ℓ: i 6=j 6=ℓ

{
|Y(i,j),ℓ| ∨ |V(i,j),ℓ| ∨ |W(i,j),ℓ|

}
.

On the other hand, same as (S.G.29), it holds that

max
i,j,ℓ: i 6=j 6=ℓ

|c(i,j),ℓ|∞ ≤
54√
N

max
i,j,ℓ: i 6=j 6=ℓ

{
|Y(i,j),ℓ| ∨ |V(i,j),ℓ| ∨ |W(i,j),ℓ|

}

+ max
i,j,ℓ: i 6=j 6=ℓ

∑

s1,s2:s1 6=s2
s1,s2∈{i,j,ℓ}

∣∣∣∣∣
1√
N

∑

m6=i,j,ℓ

Y(s1,m),s2

∣∣∣∣∣

+ max
i,j,ℓ: i 6=j 6=ℓ

∑

s1,s2:s1 6=s2
s1,s2∈{i,j,ℓ}

∣∣∣∣∣
1√
N

∑

m6=i,j,ℓ

Y(m,s1),s2

∣∣∣∣∣

+ max
i,j,ℓ: i 6=j 6=ℓ

∑

s1,s2:s1 6=s2
s1,s2∈{i,j,ℓ}

∣∣∣∣∣
1√
N

∑

m6=i,j,ℓ

V(s1,m),s2

∣∣∣∣∣(S.G.43)

+ max
i,j,ℓ: i 6=j 6=ℓ

∑

s1,s2:s1 6=s2
s1,s2∈{i,j,ℓ}

∣∣∣∣∣
1√
N

∑

m6=i,j,ℓ

V(m,s1),s2

∣∣∣∣∣
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+ max
i,j,ℓ: i 6=j 6=ℓ

∑

s1,s2:s1 6=s2
s1,s2∈{i,j,ℓ}

∣∣∣∣∣
1√
N

∑

m6=i,j,ℓ

W(s1,m),s2

∣∣∣∣∣

+ max
i,j,ℓ: i 6=j 6=ℓ

∑

s1,s2:s1 6=s2
s1,s2∈{i,j,ℓ}

∣∣∣∣∣
1√
N

∑

m6=i,j,ℓ

W(m,s1),s2

∣∣∣∣∣ .

We define

E(Y ) =

{
max

s1,s2:s1 6=s2
s1,s2∈{i,j,ℓ}

∣∣∣∣
1√
N

∑

m6=i,j,ℓ

Y(s1,m),s2

∣∣∣∣≤
C∗ log

1/2 p

p1/2
and

max
s1,s2:s1 6=s2
s1,s2∈{i,j,ℓ}

∣∣∣∣
1√
N

∑

m6=i,j,ℓ

Y(m,s1),s2

∣∣∣∣≤
C∗ log

1/2 p

p1/2
for any i 6= j 6= ℓ

}

for some sufficiently large constant C∗ > 0. We can also define E(V ) and E(W ) in the same

manner. Let Ẽ = E(Y )∩E(V )∩E(W ). Using the same arguments in Section G.7.1 to derive

the upper bound of P(Ec2) for E2 specified in (S.G.35), it holds that P(Ẽc). p−C , where C

can be sufficiently large if we select a sufficiently large C∗. Hence, restricted on Ẽ , we have

max
i,j,ℓ: i 6=j 6=ℓ

|c(i,j),ℓ|∞ .
1

p
max

i,j,ℓ: i 6=j 6=ℓ

{
|Y(i,j),ℓ| ∨ |V(i,j),ℓ| ∨ |W(i,j),ℓ|

}
+

log1/2 p

p1/2
,

which implies that

max
i,j,ℓ: i 6=j 6=ℓ

|ċ(i,j),ℓ||c(i,j),ℓ|2∞ .
ω(t)

p3
max

i,j,ℓ: i 6=j 6=ℓ

{
|Y(i,j),ℓ|3 ∨ |V(i,j),ℓ|3 ∨ |W(i,j),ℓ|3

}

+
ω(t) log p

p2
max

i,j,ℓ: i 6=j 6=ℓ

{
|Y(i,j),ℓ| ∨ |V(i,j),ℓ| ∨ |W(i,j),ℓ|

}
(S.G.44)

under Ẽ . As shown in Lemma A.5 of Chernozhukov, Chetverikov and Kato (2013), there

exists Uℓkl(v) such that |qℓkl(v)| ≤ Uℓkl(v) for any v ∈ Rp, where
∑p

ℓ,k,l=1Uℓkl(v) . φβ2

for any v ∈Rp. Then

p∑

ℓ,k,l=1

|I3,1(i, j, ℓ, k, l)|. φβ2p3
∫ 1

0
E

{
I(Ec) max

i,j,ℓ: i 6=j 6=ℓ
|ċ(i,j),ℓ||c(i,j),ℓ|2∞

}
dt

= φβ2p3
∫ 1

0
E

{
I(Ec ∩ Ẽ) max

i,j,ℓ: i 6=j 6=ℓ
|ċ(i,j),ℓ||c(i,j),ℓ|2∞

}
dt(S.G.45)

+ φβ2p3
∫ 1

0
E

{
I(Ec ∩ Ẽc) max

i,j,ℓ: i 6=j 6=ℓ
|ċ(i,j),ℓ||c(i,j),ℓ|2∞

}
dt .

Notice that maxi,j,ℓ: i 6=j 6=ℓ |Y(i,j),ℓ| ≤C , and V(i,j),ℓ andW(i,j),ℓ are normal random variables.

It holds that

(S.G.46) P

[
max

i,j,ℓ: i 6=j 6=ℓ

{
|Y(i,j),ℓ| ∨ |V(i,j),ℓ| ∨ |W(i,j),ℓ|

}
> u

]
≤Cp3 exp(−Cu2)

for any u > 0. Thus, for E defined as (S.G.42), we have P(Ec) . p3 exp(−Cβ−2p). By

(S.G.44),
∫ 1

0
E

{
I(Ec ∩ Ẽ) max

i,j,ℓ: i 6=j 6=ℓ
|ċ(i,j),ℓ||c(i,j),ℓ|2∞

}
dt
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.
1

p3
·E

[
I(Ec) max

i,j,ℓ: i 6=j 6=ℓ

{
|Y(i,j),ℓ|3 ∨ |V(i,j),ℓ|3 ∨ |W(i,j),ℓ|3

}]

+
log p

p2
·E

[
I(Ec) max

i,j,ℓ: i 6=j 6=ℓ

{
|Y(i,j),ℓ| ∨ |V(i,j),ℓ| ∨ |W(i,j),ℓ|

}]
.

By Cauchy-Schwarz inequality, we have

E

[
I(Ec) max

i,j,ℓ: i 6=j 6=ℓ

{
|Y(i,j),ℓ| ∨ |V(i,j),ℓ| ∨ |W(i,j),ℓ|

}]

≤ P
1/2(Ec) ·E1/2

[
max

i,j,ℓ: i 6=j 6=ℓ

{
|Y(i,j),ℓ|2 ∨ |V(i,j),ℓ|2 ∨ |W(i,j),ℓ|2

}]

. p3 exp

(
− Cp

β2

)
.

Analogously, we also have

E

[
I(Ec) max

i,j,ℓ: i 6=j 6=ℓ

{
|Y(i,j),ℓ|3 ∨ |V(i,j),ℓ|3 ∨ |W(i,j),ℓ|3

}]
. p3 exp

(
− Cp

β2

)
.

Hence,
∫ 1

0
E

{
I(Ec ∩ Ẽ) max

i,j,ℓ: i 6=j 6=ℓ
|ċ(i,j),ℓ||c(i,j),ℓ|2∞

}
dt. p(log p) exp

(
− Cp

β2

)
.(S.G.47)

By Cauchy-Schwarz inequality, it holds that

E

{
I(Ec ∩ Ẽc) max

i,j,ℓ: i 6=j 6=ℓ
|ċ(i,j),ℓ||c(i,j),ℓ|2∞

}

≤ P
1/2(Ẽc) ·E1/2

{
max

i,j,ℓ: i 6=j 6=ℓ
|ċ(i,j),ℓ|2|c(i,j),ℓ|4∞

}

≤ P
1/2(Ẽc) ·E1/4

{
max

i,j,ℓ: i 6=j 6=ℓ
|ċ(i,j),ℓ|4

}
·E1/4

{
max

i,j,ℓ: i 6=j 6=ℓ
|c(i,j),ℓ|8∞

}
.

Notice that P(Ẽc) . p−C , where C can be sufficiently large if we select a sufficiently large

C∗ in the definition of Ẽ . Thus, with suitable selection of C∗, we have
∫ 1

0
E

{
I(Ec ∩ Ẽc) max

i,j,ℓ: i 6=j 6=ℓ
|ċ(i,j),ℓ||c(i,j),ℓ|2∞

}
dt.

1

p11/2
.(S.G.48)

Together with (S.G.47) and β = φ log p, (S.G.45) implies that

∑

i,j,ℓ: i 6=j 6=ℓ

p∑

k,l=1

|I3,1(i, j, ℓ, k, l)|.
φβ2

p1/2
+ φβ2p6(log p) exp(−Cpβ−2)

=
φ3 log2 p

p1/2
+ φ3p6 log3 p · exp

(
− Cp

φ2 log2 p

)
.(S.G.49)

In the sequel, we consider I3,2(i, j, ℓ, k, l). Due to |qℓkl(v)| ≤ Uℓkl(v) for any v ∈ Rp, by

triangle inequality,

|I3,2(i, j, ℓ, k, l)|.
∫ 1

0

∫ 1

0
(1− τ)E

[
I(E ∩ Ẽ)Uℓkl{c−(i,j),ℓ + τc(i,j),ℓ}

× |ċ(i,j),ℓ||c(i,j),ℓk ||c(i,j),ℓl |
]
dτdt(S.G.50)
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+

∫ 1

0

∫ 1

0
(1− τ)E

[
I(E ∩ Ẽc)Uℓkl{c−(i,j),ℓ + τc(i,j),ℓ}

× |ċ(i,j),ℓ||c(i,j),ℓk ||c(i,j),ℓl |
]
dτdt .

Since
∑p

ℓ,k,l=1Uℓkl(v). φβ2 for any v ∈Rp, then

∫ 1

0

∫ 1

0
(1− τ)E

[
I(E ∩ Ẽc)Uℓkl{c−(i,j),ℓ + τc(i,j),ℓ}|ċ(i,j),ℓ||c(i,j),ℓk ||c(i,j),ℓl |

]
dτdt

. φβ2
∫ 1

0
E
[
I(E ∩ Ẽc)|ċ(i,j),ℓ||c(i,j),ℓk ||c(i,j),ℓl |

]
dt

. φβ2
∫ 1

0
E

{
I(E ∩ Ẽc) max

i,j,ℓ: i 6=j 6=ℓ
|ċ(i,j),ℓ||c(i,j),ℓ|2∞

}
dt .

Same as (S.G.48), we have

∑

i,j,ℓ: i 6=j 6=ℓ

p∑

k,l=1

∫ 1

0

∫ 1

0
(1− τ)E

[
I(E ∩ Ẽc)Uℓkl{c−(i,j),ℓ + τc(i,j),ℓ}

× |ċ(i,j),ℓ||c(i,j),ℓk ||c(i,j),ℓl |
]
dτdt.

φ3 log2 p

p1/2
.(S.G.51)

Restricted on E ∩ Ẽ , (S.G.43) implies that

max
i,j,ℓ: i 6=j 6=ℓ

|c(i,j),ℓ|∞ .
1

p1/2β
+

log1/2 p

p1/2
≤ 3

4β

for sufficiently large p if φ≪ p1/2(log p)−3/2. Lemma A.6 of Chernozhukov, Chetverikov and Kato

(2013) implies that, restricted on E ∩ Ẽ , Uℓkl(c) . Uℓkl{c−(i,j),ℓ + τc(i,j),ℓ} . Uℓkl(c) for

any τ ∈ [0,1]. Hence,
∫ 1

0

∫ 1

0
(1− τ)E

[
I(E ∩ Ẽ)Uℓkl{c−(i,j),ℓ + τc(i,j),ℓ}|ċ(i,j),ℓ||c(i,j),ℓk ||c(i,j),ℓl |

]
dτdt

.

∫ 1

0
E
{
I(E ∩ Ẽ)Uℓkl(c)|ċ(i,j),ℓ||c(i,j),ℓk ||c(i,j),ℓl |

}
︸ ︷︷ ︸

R3(i,j,ℓ,k,l)

dt .

Notice that

c
(i,j),ℓ
k =





c(i,j),k + c(j,i),k + c(j,ℓ),k + c(ℓ,j),k + c(ℓ,i),k + c(i,ℓ),k , if k 6= i, j, ℓ ,
∑

m6=i,j,ℓ

{c(m,j),i + c(j,m),i}+
∑

m6=i,ℓ

{c(m,ℓ),i + c(ℓ,m),i} , if k = i ,

∑

m6=i,j,ℓ

{c(m,i),j + c(i,m),j}+
∑

m6=j,ℓ

{c(m,ℓ),j + c(ℓ,m),j} , if k = j ,

∑

m6=i,j,ℓ

{c(m,j),ℓ + c(j,m),ℓ}+
∑

m6=i,ℓ

{c(m,i),ℓ + c(i,m),ℓ} , if k = ℓ .

Hence, if k ∈ {i, j, ℓ}, we have

|c(i,j),ℓk |.
∑

s1,s2:s1 6=s2
s1,s2∈{i,j,ℓ}

∣∣∣∣∣
1√
N

∑

m6=i,j,ℓ

Y(s1,m),s2

∣∣∣∣∣+
∑

s1,s2:s1 6=s2
s1,s2∈{i,j,ℓ}

∣∣∣∣∣
1√
N

∑

m6=i,j,ℓ

Y(m,s1),s2

∣∣∣∣∣
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+
∑

s1,s2:s1 6=s2
s1,s2∈{i,j,ℓ}

∣∣∣∣∣
1√
N

∑

m6=i,j,ℓ

V(s1,m),s2

∣∣∣∣∣+
∑

s1,s2:s1 6=s2
s1,s2∈{i,j,ℓ}

∣∣∣∣∣
1√
N

∑

m6=i,j,ℓ

V(m,s1),s2

∣∣∣∣∣

+
∑

s1,s2:s1 6=s2
s1,s2∈{i,j,ℓ}

∣∣∣∣∣
1√
N

∑

m6=i,j,ℓ

W(s1,m),s2

∣∣∣∣∣+
∑

s1,s2: s1 6=s2
s1,s2∈{i,j,ℓ}

∣∣∣∣∣
1√
N

∑

m6=i,j,ℓ

W(m,s1),s2

∣∣∣∣∣ .

Restricted on Ẽ ,

max
i,j,ℓ: i 6=j 6=ℓ

max
k∈{i,j,ℓ}

|c(i,j),ℓk |. log1/2 p

p1/2
.

Since {W(i,j),ℓ} is an independent copy of {V(i,j),ℓ} and
∑p

ℓ,k,l=1Uℓkl(v) . φβ2 for any

v ∈Rp, by (S.G.16) and (S.G.17), we have
∑

i,j,ℓ: i 6=j 6=ℓ

∑

k:k 6=i,j,ℓ

∑

l: l 6=i,j,ℓ

R3(i, j, ℓ, k, l)

. φβ2
∑

i,j: i 6=j

E

{
max
ℓ: ℓ 6=i,j

|ċ(i,j),ℓ| · max
ℓ: ℓ 6=i,j

max
k:k 6=i,j,ℓ

|c(i,j),ℓk |2
}

.
φβ2ω(t)

p
·E

[
max

i,j,ℓ: i 6=j 6=ℓ

{
|Y(i,j),ℓ|3 ∨ |V(i,j),ℓ|3 ∨ |W(i,j),ℓ|3

}]
(S.G.52)

.
φβ2ω(t)

p
+
φβ2ω(t)

p
·E

{
max

i,j,ℓ: i 6=j 6=ℓ
|V(i,j),ℓ|3

}

.
φβ2ω(t) log3/2 p

p
,

∑

i,j,ℓ: i 6=j 6=ℓ

∑

k:k 6=i,j,ℓ

∑

l∈{i,j,ℓ}

R3(i, j, ℓ, k, l)

.
φβ2 log1/2 p

p1/2

∑

i,j: i 6=j

E

{
max
ℓ: ℓ 6=i,j

|ċ(i,j),ℓ| · max
ℓ: ℓ 6=i,j

max
k:k 6=i,j,ℓ

|c(i,j),ℓk |
}

(S.G.53)

.
φβ2ω(t) log1/2 p

p1/2
E

[
max

i,j,ℓ: i 6=j 6=ℓ

{
|Y(i,j),ℓ|2 ∨ |V(i,j),ℓ|2 ∨ |W(i,j),ℓ|2

}]

.
φβ2ω(t) log3/2 p

p1/2
.

When k ∈ {i, j} and l /∈ {i, j, ℓ}, we have
∑

i,j,ℓ: i 6=j 6=ℓ

∑

l: l 6=i,j,ℓ

R3(i, j, ℓ, k, l)

. φβ2p1/2 log1/2 p ·E
{

max
i,j,ℓ: i 6=j 6=ℓ

|ċ(i,j),ℓ| · max
i,j,ℓ: i 6=j 6=ℓ

max
l: l 6=i,j,ℓ

|c(i,j),ℓl |
}

.
φβ2ω(t) log1/2 p

p3/2
·E

[
max

i,j,ℓ: i 6=j 6=ℓ

{
|Y(i,j),ℓ|2 ∨ |V(i,j),ℓ|2 ∨ |W(i,j),ℓ|2

}]

.
φβ2ω(t) log3/2 p

p3/2
,



S46

which implies

∑

i,j,ℓ: i 6=j 6=ℓ

∑

k∈{i,j}

∑

l: l 6=i,j,ℓ

R3(i, j, ℓ, k, l).
φβ2ω(t) log3/2 p

p3/2
.(S.G.54)

When k ∈ {i, j} and l ∈ {i, j, ℓ}, we have

∑

i,j,ℓ: i 6=j 6=ℓ

R3(i, j, ℓ, k, l). φβ2 log p ·E
{

max
i,j,ℓ: i 6=j 6=ℓ

|ċ(i,j),ℓ|
}

.
φβ2ω(t) log p

p
·E

[
max

i,j,ℓ: i 6=j 6=ℓ

{
|Y(i,j),ℓ| ∨ |V(i,j),ℓ| ∨ |W(i,j),ℓ|

}]

.
φβ2ω(t) log3/2 p

p
,

which implies

∑

i,j,ℓ: i 6=j 6=ℓ

∑

k∈{i,j}

∑

ℓ∈{i,j,ℓ}

R3(i, j, ℓ, k, l).
φβ2ω(t) log3/2 p

p
.

Together with (S.G.52), (S.G.53) and (S.G.54), we have

∑

i,j,ℓ: i 6=j 6=ℓ

∑

k:k 6=ℓ

p∑

l=1

R3(i, j, ℓ, k, l).
φβ2ω(t) log3/2 p

p1/2
,

which implies

∑

i,j,ℓ: i 6=j 6=ℓ

∑

k:k 6=ℓ

p∑

l=1

∫ 1

0

∫ 1

0
(1− τ)E

[
I(E ∩ Ẽ)Uℓkl{c−(i,j),ℓ + τc(i,j),ℓ}

× |ċ(i,j),ℓ||c(i,j),ℓk ||c(i,j),ℓl |
]
dτdtdτdt.

φ3 log7/2 p

p1/2
.(S.G.55)

Combining (S.G.51) and (S.G.55), (S.G.50) implies that

∑

i,j,ℓ: i 6=j 6=ℓ

∑

k:k 6=ℓ

p∑

l=1

|I3,2(i, j, ℓ, k, l)|.
φ3 log7/2 p

p1/2
.

Analogously, we can also show

∑

i,j,ℓ: i 6=j 6=ℓ

p∑

l=1

|I3,2(i, j, ℓ, ℓ, l)|.
φ3 log7/2 p

p1/2
.

Together with (S.G.49), it holds that

∑

i,j,ℓ: i 6=j 6=ℓ

p∑

k,l=1

|I3(i, j, ℓ, k, l)|.
φ3 log7/2 p

p1/2
+ φ3p6 log3 p · exp

(
− Cp

φ2 log2 p

)
.

If we select φ≪ p1/2 log−3/2 p, we have

∑

i,j,ℓ: i 6=j 6=ℓ

p∑

k,l=1

|I3(i, j, ℓ, k, l)|.
φ3 log7/2 p

p1/2
.

We complete the proof of (S.G.21). ✷
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G.9. Proof of Lemma 6. Notice that

E{ϕ(i,j),0}=
γ

1 + exp(ξ + θ̌i + θ̌j)
and E{ϕ(i,j),1}=

γ

1 + exp(−ξ − θ̌i − θ̌j)
.

Recall ξ =−ω1 log p+ ξ+ and θ̌ℓ = ω2 log p+ θ̌+ℓ for all ℓ ∈ S , where ω1 ∈ [0,2) and ω2 ∈
[0,1) such that 0≤ ω1−ω2 < 1, and |ξ+|∨maxℓ∈S |θ̌+ℓ |= o(log p). Write χp = exp(−|ξ+|∨
maxℓ∈S |θ̌+ℓ |).

For i ∈ S and j ∈ Sc, it holds that ξ+ θ̌i+ θ̌j = (ω2−ω1) log p+ ξ
++ θ̌+i . If ω1 > ω2, due

to 0< exp(ξ+ θ̌i+ θ̌j)≪ 1 and−ξ− θ̌i− θ̌j ≍ log p , then E{ϕ(i,j),0}& γ and E{ϕ(i,j),1}&
pω2−ω1χ2

pγ. If ω1 = ω2, then E{ϕ(i,j),0}& χ2
pγ and E{ϕ(i,j),1}& χ2

pγ. For i, j ∈ Sc, it holds

that ξ + θ̌i + θ̌j =−ω1 log p+ ξ+. If ω1 = 0, then E{ϕ(i,j),0}& χpγ and E{ϕ(i,j),1}& χpγ.

If ω1 > 0, due to 0< exp(ξ + θ̌i + θ̌j)≪ 1 and −ξ − θ̌i − θ̌j ≍ log p, then E{ϕ(i,j),0}& γ

and E{ϕ(i,j),1}& p−ω1χpγ. Therefore, we have

E{ϕ(i,j),0}&
{
γI(ω1 > ω2) + χ2

pγI(ω1 = ω2) , if i ∈ S, j ∈ Sc ,
γI(ω1 > 0) + χpγI(ω1 = 0) , if i, j ∈ Sc ,

(S.G.56)

E{ϕ(i,j),1}&
{
pω2−ω1χ2

pγ , if i ∈ S, j ∈ Sc ,
p−ω1χpγ , if i, j ∈ Sc .

(S.G.57)

G.9.1. Lower bound of minℓ∈S µℓ,1. Recall that

µℓ,1 =
1

|Hℓ|
∑

(i,j)∈Hℓ

E{ϕ(i,ℓ),1ϕ(i,j),0ϕ(ℓ,j),1} ,

where Hℓ = {(i, j) : i, j 6= ℓ such that i < j}. For any ℓ ∈ S , we have

2|Hℓ|µℓ,1 ≥
∑

i,j∈Sc: i 6=j

E{ϕ(i,ℓ),1ϕ(i,j),0ϕ(ℓ,j),1} .

By (S.G.56) and (S.G.57), due to s≪ p, it holds that
∑

i,j∈Sc: i 6=j

E{ϕ(i,ℓ),1ϕ(i,j),0ϕ(ℓ,j),1}& p2ω2−2ω1+2χ5
pγ

3 .

Due to Hℓ ≍ p2, then

min
ℓ∈S

µℓ,1 & p2ω2−2ω1χ5
pγ

3 .

We obtain the lower bound of minℓ∈S µℓ,1. ✷

G.9.2. Lower bound of minℓ∈Sc µℓ,1. For any ℓ ∈ Sc, we have

2|Hℓ|µℓ,1 ≥
∑

i,j∈Sc: i 6=ℓ, j 6=i,ℓ

E{ϕ(i,ℓ),1ϕ(i,j),0ϕ(ℓ,j),1} .

By (S.G.56) and (S.G.57), due to s≪ p, it holds that
∑

i,j∈Sc: i 6=ℓ, j 6=ℓ,i

E{ϕ(i,ℓ),1ϕ(i,j),0ϕ(ℓ,j),1}& p−2ω1+2χ3
pγ

3 .

Due to Hℓ ≍ p2, then

min
ℓ∈Sc

µℓ,1 & p−2ω1χ3
pγ

3 .

We obtain the lower bound of minℓ∈Sc µℓ,1. ✷
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G.9.3. Lower bound of minℓ∈S µℓ,2. Recall that

µℓ,2 =
1

|Hℓ|
∑

(i,j)∈Hℓ

E{ϕ(i,ℓ),0ϕ(i,j),1ϕ(ℓ,j),0} ,

where Hℓ = {(i, j) : i, j 6= ℓ such that i < j}. For any ℓ ∈ S , we have

2|Hℓ|µℓ,2 ≥
∑

i,j∈Sc: i 6=j

E{ϕ(i,ℓ),0ϕ(i,j),1ϕ(ℓ,j),0} .

By (S.G.56) and (S.G.57), due to s≪ p, it holds that
∑

i,j∈Sc: i 6=j

E{ϕ(i,ℓ),0ϕ(i,j),1ϕ(ℓ,j),0}& p−ω1+2χ5
pγ

3 .

Due to Hℓ ≍ p2, then

min
ℓ∈S

µℓ,2 & p−ω1χ5
pγ

3 .

We obtain the lower bound of minℓ∈S µℓ,2. ✷

G.9.4. Lower bound of minℓ∈Sc µℓ,2. For any ℓ ∈ Sc, we have

2|Hℓ|µℓ,2 ≥
∑

i,j∈Sc: i 6=ℓ, j 6=i,ℓ

E{ϕ(i,ℓ),0ϕ(i,j),1ϕ(ℓ,j),0} .

By (S.G.56) and (S.G.57), due to s≪ p, it holds that
∑

i,j∈Sc: i 6=ℓ, j 6=ℓ,i

E{ϕ(i,ℓ),0ϕ(i,j),1ϕ(ℓ,j),0}& p−ω1+2χ3
pγ

3 .

Due to Hℓ ≍ p2, then

min
ℓ∈Sc

µℓ,2 & p−ω1χ3
pγ

3 .

We obtain the lower bound of minℓ∈Sc µℓ,2. ✷

G.10. Proof of Lemma 7. For any i, j, ℓ ∈ [p], let ψ̊1(i, j; ℓ) = ψ1(i, j; ℓ)−E{ψ1(i, j; ℓ)}
and ψ̊2(i, j; ℓ) = ψ2(i, j; ℓ) − E{ψ2(i, j; ℓ)}, where ψ1(i, j; ℓ) = ϕ(i,ℓ),1ϕ(i,j),0ϕ(ℓ,j),1 and

ψ2(i, j; ℓ) = ϕ(i,ℓ),0ϕ(i,j),1ϕ(ℓ,j),0. Write Fℓ = {Zi,ℓ,Zℓ,j : (i, j) ∈ Hℓ}. As we have shown

in Section G.1,

µ̂ℓ,1− µℓ,1 =
1

|Hℓ|
∑

(i,j)∈Hℓ

[ψ1(i, j; ℓ)−E{ψ1(i, j; ℓ) |Fℓ}]

︸ ︷︷ ︸
Iℓ,1,1

+
1

|Hℓ|
∑

(i,j)∈Hℓ

[E{ψ1(i, j; ℓ) |Fℓ} −E{ψ1(i, j; ℓ)}]

︸ ︷︷ ︸
Iℓ,1,2

,

µ̂ℓ,2− µℓ,2 =
1

|Hℓ|
∑

(i,j)∈Hℓ

[ψ2(i, j; ℓ)−E{ψ2(i, j; ℓ) |Fℓ}]

︸ ︷︷ ︸
Iℓ,2,1

+
1

|Hℓ|
∑

(i,j)∈Hℓ

[E{ψ2(i, j; ℓ) |Fℓ} −E{ψ2(i, j; ℓ)}]

︸ ︷︷ ︸
Iℓ,2,2

.



SUPPLEMENT TO “EDGE DIFFERENTIALLY PRIVATE ESTIMATION” S49

Identical to the arguments stated in Section G.1.1, we have

max
k∈{1,2}

max
ℓ∈S
|Iℓ,k,1|=Op

(
log1/2 s

p

)
and max

k∈{1,2}
max
ℓ∈Sc
|Iℓ,k,1|=Op

(
log1/2 p

p

)
.(S.G.58)

Define ϕ̊(i,j),τ = ϕ(i,j),τ −E{ϕ(i,j),τ}. Same as (S.G.4), it holds that

(p− 1)(p− 2)Iℓ,1,2 = 2
∑

i,j: i 6=j, i,j 6=ℓ

ϕ̊(i,ℓ),1E{ϕ(ℓ,j),1}E{ϕ(i,j),0}
︸ ︷︷ ︸

Iℓ,1,2(1)

(S.G.59)

+
∑

i,j: i 6=j, i,j 6=ℓ

ϕ̊(i,ℓ),1ϕ̊(ℓ,j),1E{ϕ(i,j),0}
︸ ︷︷ ︸

Iℓ,1,2(2)

,

(p− 1)(p− 2)Iℓ,2,2 = 2
∑

i,j: i 6=j, i,j 6=ℓ

ϕ̊(i,ℓ),0E{ϕ(ℓ,j),0}E{ϕ(i,j),1}
︸ ︷︷ ︸

Iℓ,2,2(1)

(S.G.60)

+
∑

i,j: i 6=j, i,j 6=ℓ

ϕ̊(i,ℓ),0ϕ̊(ℓ,j),0E{ϕ(i,j),1}
︸ ︷︷ ︸

Iℓ,2,2(2)

.

In the sequel, we need the following lemmas whose proofs are given in Sections G.11 and

G.12, respectively.

LEMMA 8. Let (α,β) ∈M(γ,C1) for some fixed constant C1 ∈ (0,0.5). It holds that

E{ϕ(i,j),0}.
{
γI(ω1 ≥ 2ω2) + pω1−2ω2χ−3

p γI(ω1 < 2ω2) , if i, j ∈ S ,
γ , if i ∈ Sc or j ∈ Sc ,

E{ϕ(i,j),1}.





p2ω2−ω1χ−3
p γI(ω1 > 2ω2) + γI(ω1 ≤ 2ω2) , if i, j ∈ S ,

pω2−ω1χ−2
p γI(ω1 >ω2) + γI(ω1 = ω2) , if i ∈ S, j ∈ Sc ,

p−ω1χ−1
p γI(ω1 > 0) + γI(ω1 = 0) , if i, j ∈ Sc .

LEMMA 9. Let (α,β) ∈M(γ,C1) for some fixed constant C1 ∈ (0,0.5). It holds that

max
i,ℓ∈S: i 6=ℓ

Ai,ℓ . {spmin(2ω2−ω1, ω1−2ω2)χ−1
p + p1+ω2−ω1}χ−2

p γ2 ,

max
i∈S, ℓ∈Sc

Ai,ℓ . {spmin(−ω2, ω2−ω1)χ−4
p + p1−ω1}χ−1

p γ2 ,

max
i∈Sc, ℓ∈S

Ai,ℓ . {spmin(2ω2−ω1,0)χ−1
p + p1+ω2−ω1}χ−2

p γ2 ,

max
i,ℓ∈Sc: i 6=ℓ

Ai,ℓ . (spω2−ω1χ−1
p + p1−ω1)χ−1

p γ2 .

G.10.1. Convergence rate of maxℓ∈S |µ̂ℓ,1−µℓ,1|. Notice that µ̂ℓ,1−µℓ,1 = Iℓ,1,1+Iℓ,1,2.

Given the convergence rate of maxℓ∈S |Iℓ,1,1| in (S.G.58), in order to establish the con-

vergence rate of maxℓ∈S |µ̂ℓ,1 − µℓ,1|, we only need to derive the convergence rate of
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maxℓ∈S |Iℓ,1,2|. For Iℓ,1,2(1), we have

Iℓ,1,2(1) =
∑

i: i 6=ℓ

ϕ̊(i,ℓ),1

[
2

∑

j: j 6=i,ℓ

E{ϕ(ℓ,j),1}E{ϕ(i,j),0}
]
=

∑

i: i 6=ℓ

ϕ̊(i,ℓ),1Ai,ℓ

=
∑

i∈S: i 6=ℓ

ϕ̊(i,ℓ),1Ai,ℓ +
∑

i∈Sc

ϕ̊(i,ℓ),1Ai,ℓ .

For any i, ℓ ∈ S , write

Ãi,ℓ,S,S =
Ai,ℓ

maxi,ℓ∈S: i 6=ℓAi,ℓ
.

It then holds that
∑

i∈S: i 6=ℓ

ϕ̊(i,ℓ),1Ai,ℓ =

(
max

i,ℓ∈S:i 6=ℓ
Ai,ℓ

) ∑

i∈S: i 6=ℓ

ϕ̊(i,ℓ),1Ãi,ℓ,S,S .

Due to Ai,ℓ ≥ 0 for any i, ℓ, we have maxi,ℓ∈S Ãi,ℓ,S,S ≤ 1. Since {ϕ̊(i,ℓ),1}i∈S: i 6=ℓ is an

independent sequence, by Bernstein inequality,

P

{∣∣∣∣
∑

i∈S: i 6=ℓ

ϕ̊(i,ℓ),1Ãi,ℓ,S,S

∣∣∣∣> u

}
. exp(−Cs−1u2)

for any 0< u≤O(s), which implies

max
ℓ∈S

∣∣∣∣
∑

i∈S: i 6=ℓ

ϕ̊(i,ℓ),1Ãi,ℓ,S,S

∣∣∣∣=Op(s
1/2 log1/2 s) .

Together with Lemma 9, we have

max
ℓ∈S

∣∣∣∣
∑

i∈S: i 6=ℓ

ϕ̊(i,ℓ),1Ai,ℓ

∣∣∣∣

=Op

[
{spmin(2ω2−ω1, ω1−2ω2)χ−1

p + p1+ω2−ω1}χ−2
p γ2s1/2 log1/2 s

]
.

Analogously, we also have

max
ℓ∈S

∣∣∣∣
∑

i∈Sc

ϕ̊(i,ℓ),1Ai,ℓ

∣∣∣∣

=Op

[
{spmin(2ω2−ω1,0)χ−1

p + p1+ω2−ω1}χ−2
p γ2p1/2 log1/2 s

]
.

Due to pmin(2ω2−ω1, ω1−2ω2) ≤ pmin(2ω2−ω1,0) and s≪ p, then

max
ℓ∈S
|Iℓ,1,2(1)|=Op

[
{spmin(2ω2−ω1,0)χ−1

p + p1+ω2−ω1}χ−2
p γ2p1/2 log1/2 s

]
.

It follows from Lemma 8 that maxi,j: i 6=j, i,j 6=ℓE{ϕ(i,j),0} . γ. Using the same arguments

in Section G.1.2 for deriving the convergence rate of maxℓ∈[p] |Iℓ,1,2(2)| there, we have

maxℓ∈S |Iℓ,1,2(2)|=Op(γp log s). Therefore, by (S.G.59), we have

max
ℓ∈S
|Iℓ,1,2|= Op

[
γ2p−3/2{spmin(2ω2−ω1,0)χ−1

p + p1+ω2−ω1}χ−2
p log1/2 s

]

+Op(γp
−1 log s) .

Together with (S.G.58), it holds that

max
ℓ∈S
|µ̂ℓ,1− µℓ,1|= Op

[
γ2p−3/2{spmin(2ω2−ω1,0)χ−1

p + p1+ω2−ω1}χ−2
p log1/2 s

]
(S.G.61)

+Op(γp
−1 log s) +Op(p

−1 log1/2 s) .

We obtain the convergence rate of maxℓ∈S |µ̂ℓ,1− µℓ,1|. ✷
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G.10.2. Convergence rate of maxℓ∈S |µ̂ℓ,2−µℓ,2|. Notice that µ̂ℓ,2−µℓ,2 = Iℓ,2,1+Iℓ,2,2.

Given the convergence rate of maxℓ∈S |Iℓ,2,1| in (S.G.58), in order to establish the con-

vergence rate of maxℓ∈S |µ̂ℓ,2 − µℓ,2|, we only need to derive the convergence rate of

maxℓ∈S |Iℓ,2,2|. For Iℓ,2,2(1), we have

Iℓ,2,2(1) =
∑

i∈S: i 6=ℓ

ϕ̊(i,ℓ),0Aℓ,i +
∑

i∈Sc

ϕ̊(i,ℓ),0Aℓ,i .

Following the same arguments in Section G.10.1 for obtaining the convergence rate of

maxℓ∈S |Iℓ,1,2(1)| there, it holds that

max
ℓ∈S
|Iℓ,2,2(1)|= Op

[
γ2s1/2{spmin(2ω2−ω1, ω1−2ω2)χ−1

p + p1+ω2−ω1}χ−2
p log1/2 s

]

+Op

[
γ2p1/2{spmin(−ω2, ω2−ω1)χ−4

p + p1−ω1}χ−1
p log1/2 s

]
.(S.G.62)

For Iℓ,2,2(2), it holds that

|Iℓ,2,2(2)| ≤
∣∣∣∣

∑

i, j∈S: i 6=j, i,j 6=ℓ

ϕ̊(i,ℓ),0ϕ̊(ℓ,j),0E{ϕ(i,j),1}
∣∣∣∣

︸ ︷︷ ︸
Dℓ,1

+

∣∣∣∣
∑

i∈S, j∈Sc: i 6=ℓ

ϕ̊(i,ℓ),0ϕ̊(ℓ,j),0E{ϕ(i,j),1}
∣∣∣∣

︸ ︷︷ ︸
Dℓ,2

+

∣∣∣∣
∑

i∈Sc, j∈S: j 6=ℓ

ϕ̊(i,ℓ),0ϕ̊(ℓ,j),0E{ϕ(i,j),1}
∣∣∣∣

︸ ︷︷ ︸
Dℓ,3

+

∣∣∣∣
∑

i,j∈Sc: i 6=j

ϕ̊(i,ℓ),0ϕ̊(ℓ,j),0E{ϕ(i,j),1}
∣∣∣∣

︸ ︷︷ ︸
Dℓ,4

.

By Lemma 8, maxi,j∈S: i 6=j, i,j 6=ℓE{ϕ(i,j),1} . p2ω2−ω1χ−3
p γI(ω1 > 2ω2) + γI(ω1 ≤ 2ω2)

and maxi,j∈Sc: i 6=j E{ϕ(i,j),1} . p−ω1χ−1
p I(ω1 > 0) + γI(ω1 = 0). Applying the same ar-

guments in Section G.1.2 for deriving the convergence rate of maxℓ∈[p] |Iℓ,1,2(2)| there, we

have

max
ℓ∈S

Dℓ,1 = Op

[
γs{p2ω2−ω1χ−3

p I(ω1 > 2ω2) + I(ω1 ≤ 2ω2)} log s
]
,

max
ℓ∈S

Dℓ,4 = Op

[
γp{p−ω1χ−1

p I(ω1 > 0) + I(ω1 = 0)} log s
]
.

Given ℓ ∈ S , define dℓi,j = E{ϕ(i,j),1} for any (i, j) ∈ S × Sc with i 6= ℓ, and dℓi,j = 0
otherwise. Then

Dℓ,2 =

∣∣∣∣
p∑

i,j=1

ϕ̊(i,ℓ),0ϕ̊(ℓ,j),0d
ℓ
i,j

∣∣∣∣=
(

max
i,j∈[p]

dℓi,j

)∣∣∣∣
p∑

i,j=1

ϕ̊(i,ℓ),0ϕ̊(ℓ,j),0d̃
ℓ
i,j

∣∣∣∣(S.G.63)

with d̃ℓi,j = dℓi,j/maxi,j∈[p] d
ℓ
i,j ∈ [0,1]. By the decoupling inequalities of de la Peña and Montgomery-Smith

(1995) and Theorem 3.3 of Giné, Latała and Zinn (2000), it holds that

max
ℓ∈S

P

(∣∣∣∣
p∑

i,j=1

ϕ̊(i,ℓ),0ϕ̊(ℓ,j),0d̃
ℓ
i,j

∣∣∣∣> u

)
. exp(−Cu1/2) + exp(−Cp−1/3u2/3)
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+ exp(−Cs−1/2p−1/2u) + exp(−Cs−1p−1u2)

for any u > 0, which implies

max
ℓ∈S

∣∣∣∣
p∑

i,j=1

ϕ̊(i,ℓ),0ϕ̊(ℓ,j),0d̃
ℓ
i,j

∣∣∣∣=Op(s
1/2p1/2 log s) .

It follows from Lemma 8 that 0<maxi,j∈[p] d
ℓ
i,j . pω2−ω1χ−2

p γI(ω1 > ω2) + γI(ω1 = ω2).
By (S.G.63), we have

max
ℓ∈S

Dℓ,2 =Op

[
γs1/2p1/2{pω2−ω1χ−2

p I(ω1 >ω2) + I(ω1 = ω2)} log s
]
.

Analogously, we can also show

max
ℓ∈S

Dℓ,3 =Op

[
γs1/2p1/2{pω2−ω1χ−2

p I(ω1 >ω2) + I(ω1 = ω2)} log s
]
.

Therefore,

max
ℓ∈S
|Iℓ,2,2(2)|= Op

[
γs{p2ω2−ω1χ−3

p I(ω1 > 2ω2) + I(ω1 ≤ 2ω2)} log s
]

+Op

[
γs1/2p1/2{pω2−ω1χ−2

p I(ω1 > ω2) + I(ω1 = ω2)} log s
]

+Op

[
γp{p−ω1χ−1

p I(ω1 > 0) + I(ω1 = 0)} log s
]
.

By (S.G.60) and (S.G.62), we have

max
ℓ∈S
|Iℓ,2,2|= Op

[
γ2s1/2p−2{spmin(2ω2−ω1, ω1−2ω2)χ−1

p + p1+ω2−ω1}χ−2
p log1/2 s

]

+Op

[
γ2p−3/2{spmin(−ω2, ω2−ω1)χ−4

p + p1−ω1}χ−1
p log1/2 s

]

+Op

[
γsp−2{p2ω2−ω1χ−3

p I(ω1 > 2ω2) + I(ω1 ≤ 2ω2)} log s
]

+Op

[
γs1/2p−3/2{pω2−ω1χ−2

p I(ω1 >ω2) + I(ω1 = ω2)} log s
]

+Op

[
γp−1{p−ω1χ−1

p I(ω1 > 0) + I(ω1 = 0)} log s
]
.

Together with (S.G.58), it holds that

max
ℓ∈S
|µ̂ℓ,2− µℓ,2|= Op

[
γ2s1/2p−2{spmin(2ω2−ω1, ω1−2ω2)χ−1

p + p1+ω2−ω1}χ−2
p log1/2 s

]

+Op

[
γ2p−3/2{spmin(−ω2, ω2−ω1)χ−4

p + p1−ω1}χ−1
p log1/2 s

]

+Op

[
γsp−2{p2ω2−ω1χ−3

p I(ω1 > 2ω2) + I(ω1 ≤ 2ω2)} log s
]

+Op

[
γs1/2p−3/2{pω2−ω1χ−2

p I(ω1 > ω2) + I(ω1 = ω2)} log s
]

+Op

[
γp−1{p−ω1χ−1

p I(ω1 > 0) + I(ω1 = 0)} log s
]

+Op(p
−1 log1/2 s) .

We obtain the convergence rate of maxℓ∈S |µ̂ℓ,2− µℓ,2|. ✷

G.10.3. Convergence rate of maxℓ∈Sc |µ̂ℓ,1 − µℓ,1|. Notice that µ̂ℓ,1 − µℓ,1 = Iℓ,1,1 +
Iℓ,1,2. Given the convergence rate of maxℓ∈Sc |Iℓ,1,1| in (S.G.58), in order to establish the

convergence rate of maxℓ∈Sc |µ̂ℓ,1 − µℓ,1|, we only need to derive the convergence rate of

maxℓ∈Sc |Iℓ,1,2|. For Iℓ,1,2(1), we have

Iℓ,1,2(1) =
∑

i∈S

ϕ̊(i,ℓ),1Ai,ℓ +
∑

i∈Sc: i 6=ℓ

ϕ̊(i,ℓ),1Ai,ℓ .
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Following the same arguments in Section G.10.1 for obtaining the convergence rate of

maxℓ∈S |Iℓ,1,2(1)| there, it holds that

max
ℓ∈Sc
|Iℓ,1,2(1)|= Op

[
γ2s1/2{spmin(−ω2, ω2−ω1)χ−4

p + p1−ω1}χ−1
p log1/2 p

]

+Op

{
γ2p1/2(spω2−ω1χ−1

p + p1−ω1)χ−1
p log1/2 p

}
.

It follows from Lemma 8 that maxi,j: i 6=j, i,j 6=ℓE{ϕ(i,j),0} . γ. Applying the same argu-

ments in Section G.1.2 for deriving the convergence rate of maxℓ∈[p] |Iℓ,1,2(2)| there, we

have maxℓ∈Sc |Iℓ,1,2(2)|=Op(γp log p). Therefore, by (S.G.59), we have

max
ℓ∈Sc
|Iℓ,1,2|= Op

[
γ2s1/2p−2{spmin(−ω2, ω2−ω1)χ−4

p + p1−ω1}χ−1
p log1/2 p

]

+Op

{
γ2p−3/2(spω2−ω1χ−1

p + p1−ω1)χ−1
p log1/2 p

}
+Op(γp

−1 log p) .

Together with (S.G.58), we have

max
ℓ∈Sc
|µ̂ℓ,1 − µℓ,1|= Op

[
γ2s1/2p−2{spmin(−ω2, ω2−ω1)χ−4

p + p1−ω1}χ−1
p log1/2 p

]

+Op

{
γ2p−3/2(spω2−ω1χ−1

p + p1−ω1)χ−1
p log1/2 p

}

+Op(γp
−1 log p) +Op(p

−1 log1/2 p) .

We obtain the convergence rate of maxℓ∈Sc |µ̂ℓ,1− µℓ,1|. ✷

G.10.4. Convergence rate of maxℓ∈Sc |µ̂ℓ,2 − µℓ,2|. Notice that µ̂ℓ,2 − µℓ,2 = Iℓ,2,1 +
Iℓ,2,2. Given the convergence rate of maxℓ∈Sc |Iℓ,2,1| in (S.G.58), in order to establish the

convergence rate of maxℓ∈Sc |µ̂ℓ,2 − µℓ,2|, we only need to derive the convergence rate of

maxℓ∈Sc |Iℓ,2,2|. For Iℓ,2,2(1), we have

Iℓ,2,2(1) =
∑

i∈S

ϕ̊(i,ℓ),0Aℓ,i +
∑

i∈Sc: i 6=ℓ

ϕ̊(i,ℓ),0Aℓ,i .

Following the same arguments in Section G.10.1 for obtaining the convergence rate of

maxℓ∈S |Iℓ,1,2(1)| there, it holds that

max
ℓ∈Sc
|Iℓ,2,2(1)|= Op

[
γ2s1/2{spmin(2ω2−ω1,0)χ−1

p + p1+ω2−ω1}χ−2
p log1/2 p

]

+Op

{
γ2p1/2(spω2−ω1χ−1

p + p1−ω1)χ−1
p log1/2 p

}
.

For Iℓ,2,2(2), by the same arguments for deriving the convergence rate of maxℓ∈S |Iℓ,2,2(2)|
in Section G.10.2, it holds that

max
ℓ∈Sc
|Iℓ,2,2(2)|= Op

[
γs{p2ω2−ω1χ−3

p I(ω1 > 2ω2) + I(ω1 ≤ 2ω2)} log p
]

+Op

[
γs1/2p1/2{pω2−ω1χ−2

p I(ω1 >ω2) + I(ω1 = ω2)} log p
]

+Op

[
γp{p−ω1χ−1

p I(ω1 > 0) + I(ω1 = 0)} log p
]
.

Therefore, by (S.G.60), we have

max
ℓ∈Sc
|Iℓ,2,2|= Op

[
γ2s1/2p−2{spmin(2ω2−ω1,0)χ−1

p + p1+ω2−ω1}χ−2
p log1/2 p

]

+Op

{
γ2p−3/2(spω2−ω1χ−1

p + p1−ω1)χ−1
p log1/2 p

}

+Op

[
γsp−2{p2ω2−ω1χ−3

p I(ω1 > 2ω2) + I(ω1 ≤ 2ω2)} log p
]

+Op

[
γs1/2p−3/2{pω2−ω1χ−2

p I(ω1 > ω2) + I(ω1 = ω2)} log p
]

+Op

[
γp−1{p−ω1χ−1

p I(ω1 > 0) + I(ω1 = 0)} log p
]
.
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Together with (S.G.58), it holds that

max
ℓ∈Sc
|µ̂ℓ,2 − µℓ,2|= Op

[
γ2s1/2p−2{spmin(2ω2−ω1,0)χ−1

p + p1+ω2−ω1}χ−2
p log1/2 p

]

+Op

{
γ2p−3/2(spω2−ω1χ−1

p + p1−ω1)χ−1
p log1/2 p

}

+Op

[
γsp−2{p2ω2−ω1χ−3

p I(ω1 > 2ω2) + I(ω1 ≤ 2ω2)} log p
]

+Op

[
γs1/2p−3/2{pω2−ω1χ−2

p I(ω1 > ω2) + I(ω1 = ω2)} log p
]

+Op

[
γp−1{p−ω1χ−1

p I(ω1 > 0) + I(ω1 = 0)} log p
]

+Op(p
−1 log1/2 p) .

We obtain the convergence rate of maxℓ∈Sc |µ̂ℓ,2− µℓ,2|. ✷

G.11. Proof of Lemma 8. Notice that γ = 1− α− β and

E{ϕ(i,j),0}=γ · P(Xi,j = 0) =
γ

1 + exp(ξ + θ̌i + θ̌j)
,

E{ϕ(i,j),1}=γ · P(Xi,j = 1) =
γ

1 + exp(−ξ − θ̌i− θ̌j)
.

Recall ξ =−ω1 log p+ ξ+ and θ̌ℓ = ω2 log p+ θ̌+ℓ for all ℓ ∈ S , where ω1 ∈ [0,2) and ω2 ∈
[0,1) such that 0≤ ω1−ω2 < 1, and |ξ+|∨maxℓ∈S |θ̌+ℓ |= o(log p). Write χp = exp(−|ξ+|∨
maxℓ∈S |θ̌+ℓ |).

For i, j ∈ S , it holds that ξ + θ̌i + θ̌j = (2ω2 − ω1) log p + ξ+ + θ̌+i + θ̌+j . If ω1 > 2ω2,

due to exp(ξ+ θ̌i+ θ̌j)> 0 and−ξ− θ̌i− θ̌j ≍ log p, then E{ϕ(i,j),0} ≤ γ and E{ϕ(i,j),1}.
p2ω2−ω1χ−3

p γ. If ω1 = 2ω2, due to exp(ξ + θ̌i + θ̌j) > 0 and exp(−ξ − θ̌i − θ̌j) > 0, then

E{ϕ(i,j),0} ≤ γ and E{ϕ(i,j),1} ≤ γ. If ω1 < 2ω2, due to ξ + θ̌i + θ̌j ≍ log p and exp(−ξ −
θ̌i − θ̌j)> 0, then E{ϕ(i,j),0}. p−2ω2+ω1χ−3

p γ and E{ϕ(i,j),1} ≤ γ.

For i ∈ S and j ∈ Sc, it holds that ξ+ θ̌i+ θ̌j = (ω2−ω1) log p+ξ
++ θ̌+i . Due to ω1 ≥ ω2

and exp(ξ+ θ̌i+ θ̌j)> 0, then E{ϕ(i,j),0} ≤ γ. If ω1 = ω2, due to exp(−ξ− θ̌i− θ̌j)> 0, then

E{ϕ(i,j),1} ≤ γ. If ω1 > ω2, due to −ξ − θ̌i − θ̌j ≍ log p, then E{ϕ(i,j),1}. pω2−ω1χ−2
p γ.

For i, j ∈ Sc, it holds that ξ + θ̌i + θ̌j =−ω1 log p+ ξ+. Due to ω1 ≥ 0 and exp(ξ + θ̌i +
θ̌j)> 0, then E{ϕ(i,j),0} ≤ γ. If ω1 = 0, due to exp(−ξ− θ̌i− θ̌j)> 0, then E{ϕ(i,j),1} ≤ γ.

If ω1 > 0, due to −ξ − θ̌i− θ̌j ≍ log p, then E{ϕ(i,j),1} ≤ p−ω1χ−1
p γ. ✷

G.12. Proof of Lemma 9. Recall Ai,ℓ = 2
∑

j: j 6=i,ℓE{ϕ(ℓ,j),1}E{ϕ(i,j),0}.
G.12.1. Upper bound of maxi,ℓ∈S: i 6=ℓAi,ℓ. For any i, ℓ ∈ S and i 6= ℓ,

Ai,ℓ = 2
∑

j∈S: j 6=i,ℓ

E{ϕ(ℓ,j),1}E{ϕ(i,j),0}+2
∑

j∈Sc

E{ϕ(ℓ,j),1}E{ϕ(i,j),0} .

By Lemma 8, due to s≪ p and χp ∈ (0,1], it holds that
∑

j∈S: j 6=i,ℓ

E{ϕ(ℓ,j),1}E{ϕ(i,j),0}. spmin(2ω2−ω1, ω1−2ω2)χ−3
p γ2 ,

∑

j∈Sc

E{ϕ(ℓ,j),1}E{ϕ(i,j),0}. p1+ω2−ω1χ−2
p γ2 ,

which implies

max
i,ℓ∈S: i 6=ℓ

Ai,ℓ . {spmin(2ω2−ω1, ω1−2ω2)χ−1
p + p1+ω2−ω1}χ−2

p γ2 .
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We obtain the upper bound of maxi,ℓ∈S: i 6=ℓAi,ℓ. ✷

G.12.2. Upper bound of maxi∈S, ℓ∈Sc Ai,ℓ. For any i ∈ S and ℓ ∈ Sc,

Ai,ℓ = 2
∑

j∈S: j 6=i

E{ϕ(ℓ,j),1}E{ϕ(i,j),0}+ 2
∑

j∈Sc: j 6=ℓ

E{ϕ(ℓ,j),1}E{ϕ(i,j),0} .

By Lemma 8, due to s≪ p and χp ∈ (0,1], it holds that
∑

j∈S: j 6=i

E{ϕ(ℓ,j),1}E{ϕ(i,j),0}. spmin(−ω2, ω2−ω1)χ−5
p γ2 ,

∑

j∈Sc: j 6=ℓ

E{ϕ(ℓ,j),1}E{ϕ(i,j),0}. p1−ω1χ−1
p γ2 ,

which implies

max
i∈S, ℓ∈Sc

Ai,ℓ . {spmin(−ω2, ω2−ω1)χ−4
p + p1−ω1}χ−1

p γ2 .

We obtain the upper bound of maxi∈S, ℓ∈ScAi,ℓ. ✷

G.12.3. Upper bound of maxi∈Sc, ℓ∈S Ai,ℓ. For any i ∈ Sc and ℓ ∈ S ,

Ai,ℓ = 2
∑

j∈S: j 6=ℓ

E{ϕ(ℓ,j),1}E{ϕ(i,j),0}+2
∑

j∈Sc: j 6=i

E{ϕ(ℓ,j),1}E{ϕ(i,j),0} .

By Lemma 8, due to s≪ p and χp ∈ (0,1], it holds that
∑

j∈S: j 6=ℓ

E{ϕ(ℓ,j),1}E{ϕ(i,j),0}. spmin(2ω2−ω1,0)χ−3
p γ2 ,

∑

j∈Sc: j 6=i

E{ϕ(ℓ,j),1}E{ϕ(i,j),0}. p1+ω2−ω1χ−2
p γ2 ,

which implies

max
i∈Sc, ℓ∈S

Ai,ℓ . {spmin(2ω2−ω1,0)χ−1
p + p1+ω2−ω1}χ−2

p γ2 .

We obtain the upper bound of maxi∈Sc, ℓ∈SAi,ℓ. ✷

G.12.4. Upper bound of maxi,ℓ∈Sc: i 6=ℓAi,ℓ. For any i, ℓ ∈ Sc and i 6= ℓ,

Ai,ℓ = 2
∑

j∈S

E{ϕ(ℓ,j),1}E{ϕ(i,j),0}+ 2
∑

j∈Sc: j 6=i,ℓ

E{ϕ(ℓ,j),1}E{ϕ(i,j),0} .

By Lemma 8, due to s≪ p and χp ∈ (0,1], it holds that
∑

j∈S

E{ϕ(ℓ,j),1}E{ϕ(i,j),0}. spω2−ω1χ−2
p γ2 ,

∑

j∈Sc: j 6=i,ℓ

E{ϕ(ℓ,j),1}E{ϕ(i,j),0}. p1−ω1χ−1
p γ2 ,

which implies

max
i,ℓ∈Sc: i 6=ℓ

Ai,ℓ . (spω2−ω1χ−1
p + p1−ω1)χ−1

p γ2 .

We obtain the upper bound of maxi,ℓ∈Sc: i 6=ℓAi,ℓ. ✷
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