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A standing challenge in data privacy is the trade-off between the level
of privacy and the efficiency of statistical inference. Here we conduct an
in-depth study of this trade-off for parameter estimation in the S-model
(Chatterjee, Diaconis and Sly, 2011) for edge differentially private network
data released via jittering (Karwa, Krivitsky and Slavkovi¢, 2017). Unlike
most previous approaches based on maximum likelihood estimation for this
network model, we proceed via method-of-moments. This choice facilitates
our exploration of a substantially broader range of privacy levels — corre-
sponding to stricter privacy — than has been to date. Over this new range we
discover our proposed estimator for the parameters exhibits an interesting
phase transition, with both its convergence rate and asymptotic variance fol-
lowing one of three different regimes of behavior depending on the level of
privacy. Because identification of the operable regime is difficult if not impos-
sible in practice, we devise a novel adaptive bootstrap procedure to construct
uniform inference across different phases. In fact, leveraging this bootstrap
we are able to provide for simultaneous inference of all parameters in the -
model (i.e., equal to the number of nodes), which, to our best knowledge, is
the first result of its kind. Numerical experiments confirm the competitive and
reliable finite sample performance of the proposed inference methods, next to
a comparable maximum likelihood method, as well as significant advantages
in terms of computational speed and memory.

1. Introduction. In this information age, data is one of the most important assets. With
ever-advancing machine learning technology, collecting, sharing and using data yield great
societal and economic benefits, while the abundance and granularity of personal data bring
new risks of potential exposure of sensitive personal or financial information which may
lead to adverse consequences. Therefore, continuous and conscientious effort has been made
to formulate concepts of sensitivity of the data and privacy guarantee in data usage, and
those concepts evolve along with the technological advancement. At present, one of most
commonly used formulations of data privacy is the so-called differential privacy (Dwork,
2006; Wasserman and Zhou, 2010). This paper is devoted to studying statistical estimation
in the context of edge differential privacy for network data.

In network data, individuals (e.g., persons or firms) are typically represented by nodes
and their inter-relationships are represented by edges. Therefore, network data often contain
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sensitive individual information. On the other hand, for analysis purposes the information
of interest in the data should be sufficiently preserved. Hence, the primary concern for data
privacy is two-folded: (a) to release only a sanitized version of the original network data to
protect privacy, and (b) the sanitized data should preserve the information of interest such
that analysis based on the sanitized data is still effective.

To protect privacy, the conventional approach is to release some noised version of sum-
mary statistics of interest. Normally the summary statistics used are of (much) lower dimen-
sion than the original data. In the context of network data, the chosen summary statistics can
be the node degree sequence (Karwa and Slavkovié, 2016) or subgraph counts (Blocki et al.,
2013). To achieve differential privacy, only a noised version of the summary statistics is
released. The noised version of the statistics is generated based on some appropriate re-
lease mechanism, which depends critically on the so-called sensitivity of the adopted statis-
tics. One of the most frequently used data release schemes is the Laplace mechanism of
Dwork et al. (2006). See also Section 2 of Wasserman and Zhou (2010), and Section 3 of
Karwa and Slavkovi¢ (2016). Karwa and Slavkovi¢ (2016) consider edge differential privacy
for the 5-model (Chatterjee, Diaconis and Sly, 2011), where only the node degree sequence,
which is a sufficient statistic, is released with added noise generated from a discrete Laplace
mechanism. However, a noisy degree sequence may no longer be a legitimate degree se-
quence. Even for a legitimate degree sequence, the maximum likelihood estimator (MLE)
may not exist. Karwa and Slavkovi¢ (2016) propose a two-step procedure that entails ‘de-
noising’ the noisy sequence first and then estimating the parameters using the de-noised data
by MLE.

A radically different approach is to release a noisy version of an entire network.
Karwa, Krivitsky and Slavkovié (2017) offer what they call a generalized random response
mechanism for doing so and present empirical results of its use with maximum likelihood
estimation in exponential random graph models. The structure of this release mechanism is
same as the noisy network setting of Chang, Kolaczyk and Yao (2022), where the edge status
of each pair of nodes is known only up to some binary noise and method-of-moments was
used to estimate certain network summary statistics. As noted by Chang, Kolaczyk and Yao
(2020), this noisy network setting in turn is essentially analogous to the idea of jittering in
the analysis of classical Euclidean data, where each original data point is released with added
noise. In this paper we study this jittering release mechanism for network data, and we do
so in the specific context of parameter estimation for the 5-model. However, importantly, we
note that unlike approaches based on releasing noised versions of specific, pre-determined
summary statistics, jittering allows for the possibility of multiple statistics to be calculated
and/or quantities to be estimated from the same released network.

Specifically, we conduct an in-depth study on the statistical inference for the 5-model
based on the edge m-differentially private data generated via jittering, where 7 > 0 reflects the
privacy level; the smaller 7, the greater the level of privacy. Unlike most previous approaches
to inference under this model, based on maximum likelihood estimation, we proceed via
method of moments. This choice facilitates our exploration of a substantially broader range
of privacy levels 7 than has been to date. Let p be the number of nodes in the network. Our
major contributions are as follows.

* First, we develop the asymptotic theory when p — oo and m — 0, and find that (i) in order
to achieve consistency of the newly proposed moment-based estimator, 7 should decay to
zero slower than p~1/3 logl/ 6 p, while (ii) both the convergence rate and the asymptotic
variance of our proposed estimator depend intimately on the interplay between p and 7. In
particular, the asymptotic behavior of these quantities exhibits an interesting phase transi-
tion phenomenon, as 7 decays to zero as a function of p, following one of three different
regimes of behavior: 7 > p VA r=p V4 andp~ V4> > p /3 10g1/6p.
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* Second, because identification of the operable regime is difficult if not impossible in prac-
tice, we devise a novel adaptive bootstrap procedure to construct uniform inference across
different phases.

e Third, leveraging this bootstrap we are able to provide for simultaneous inference of all
parameters in the S-model (i.e., equal to the number of nodes). This, to our best knowledge,
is the first result of its kind, which requires a substantially different and more nuanced
technical investigation than those for finite-dimensional results.

 Lastly, numerical experiments confirm the competitive and reliable finite sample perfor-
mance of the proposed inference methods, next to a comparable maximum likelihood
method, as well as significant advantages in terms of computational speed and memory.

The dichotomy of ‘dense’ versus ‘sparse’ networks is an important one in network
science, as sparsity of edges is a property encountered widely in practice with real-
world networks. In recent years, theoretical properties of sparse S-models have been suc-
cessfully considered, extending the original developments for dense 5-models (such as
cited above). See, for example, Mukherjee, Mukherjee and Sen (2018), Chen, Kato and Leng
(2021), Stein and Leng (2021), and Zhang et al. (2021), which in turn build on earlier work
of Rinaldo, Petrovi¢ and Fienberg (2013). Fan, Zhang and Yan (2020) have addressed esti-
mation in an edge-weighted version of the sparse S-model (as well as in the dense case)
under the differential privacy mechanism of Karwa and Slavkovié¢ (2016). Here in this paper
we conduct the majority of our development in the dense case, after which we then extend
our results to the sparse case.

The rest of the paper is organized as follows. Section 2 introduces the concept of
edge m-differential privacy for networks, and the data release mechanism by jittering
(Karwa, Krivitsky and Slavkovi¢, 2017). Section 3 addresses inference for the 5-model based
on edge differentially private data, introducing the method-of-moments estimator and char-
acterizing its asymptotic behavior. Section 4 develops the adaptive bootstrap inference that
makes inference feasible in practice (i.e., despite the phase transition), and presents the ac-
companying results on simultaneous inference. Some numerical results are reported in Sec-
tion 5. Section 6 illustrates how to extend the proposed moment-based method and the asso-
ciated theory to sparse 5-models. We relegate all the technical proofs to the supplementary
material.

Notation. For any integer d > 1, we write [d] = {1,...,d}, and denote by I, the d x d
identity matrix. We denote by I(-) the indicator function. For a vector h = (hy,...,hg)",
we write |h|p = Z;l:l I(h; #0) and |h| = maxj¢q |h;| for its Lo-norm and L.-norm,
respectively. For a countable set S, we use #S or |S| to denote its cardinality. For two
sequences of positive numbers {a,},>1 and {c,}p>1, we write a, < ¢, or ¢, 2 ap if
limsup,, , ., ap/c, < 00, and write a,, < ¢, if and only if a, < ¢, and ¢, < @, hold simulta-
neously. We also write a;, < ¢, or ¢, > a,, if limsup,,_, . a,/c, = 0.

2. Edge differential privacy.

2.1. Definition. We consider simple networks in the sense that there are no self-loops
and there exists at most one edge from one node to another for a directed network, and at
most one edge between two nodes for an undirected network. Such a network with p nodes
can be represented by an adjacency matrix X = (Xj j)pxp, Where X;; =0, and X; ; =1
indicating an edge from the ¢-th node to the j-th node, and O otherwise. For undirected net-
works, X; ; = X ;. In this paper, we always assume that the p nodes are fixed and are labeled
as 1,...,p. Then a simple network can be represented entirely by its adjacency matrix. To
simplify statements, we often refer to an adjacency matrix X as a network.



Let X be the set consisting of the adjacency matrices of all the simple and directed (or
undirected) networks with p nodes. For any X = (X j)pxp € X and Y = (Y} j)pxp € &, the
Hamming distance between X and Y is defined as

2.1) 0X,Y)=#{(i,j) €T: Xi; #Yi;},

where Z = {(4,7) : 1 <1 # j < p} for directed networks, and Z = {(4,75) : 1 <i < j < p}
for undirected networks. To protect privacy, the original network X is not released directly.
Instead we release a sanitized version Z = (Z; j)pxp € X of the network, where Z is gen-
erated according to some conditional distribution Q(-|X). Here @ is also called a release
mechanism (Wasserman and Zhou, 2010).

DEFINITION 1 (Edge differential privacy). For any m > 0, a release mechanism (i.e. a
conditional probability distribution) () satisfies w-edge differential privacy if

2.2) sup sup M <er.

X, YeX:6(X,Y)=1 zex:Q(z| X)>0 Q(Z|X) ~

The definition above equates privacy with the inability to distinguish two close networks. The
privacy parameter 7 controls the amount of randomness added to released data; the smaller
7 is the more protection on privacy. Notice that (2.2) is much more stringent than requiring
|Q(Z|Y)—Q(Z|X)]| to be small forany X,Y € X with 6(X,Y) = 1. In practice  is often
chosen to be small. Then it follows from (2.2) that

Q(Z]Y) - QZ|X)| _ «

—1l=7.

sup sup

X, YEX:6(X,Y)=1 ZeX: Q(Z|X)>0 Q(Z[X)
Note that multiple notions of privacy have been introduced for networks; see Jiang et al.
(2020) for a recent survey. In this paper we focus on the notion of edge differential privacy
(e.g., Nissim, Raskhodnikova and Smith (2007)). At the same time, there is a connection
between differential privacy and hypothesis testing.

PROPOSITION 1 (Wasserman and Zhou, 2010). Let the released network Z ~ Q(- | X)
and @ satisfy m-edge differential privacy for some w > 0. For any given i # j, consider
hypotheses Hy : X; j =1 versus Hy : X; j = 0. Then the power of any test at the significance
level v and based on Z, () and the distribution of X is bounded from above by ~e™, provided
that X; j is independent of { Xy, s : (k,?) € T and (k,0) # (i,7)}.

Proposition 1 implies that if Z is released through ) which satisfies 7m-edge differential
privacy and 7 is sufficiently small, it is virtually impossible to identify whether an edge ex-
ists (i.e. X;; = 1) or not (i.e. X; ; = 0) in the original network through statistical tests, as
the power of any test is bounded by its significance level multiplied by e™. The independence
condition in Proposition 1 is satisfied by the Erdos-Rényi class of models for which all edges
are independent, including the S-model and the well-known stochastic block model. Propo-
sition 1 follows almost immediately from the Neyman-Pearson lemma for the optimality of
likelihood ratio tests for simple null and simple alternative hypotheses. It was first proved by
Wasserman and Zhou (2010) with independent observations. Since their proof can be adapted
to our setting in a straightforward manner, we omit the details.

For further discussion on differential privacy under more general settings, we refer to
Dwork et al. (2006) and Wasserman and Zhou (2010).
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2.2. Edge privacy via jittering. Now we introduce the data release mechanism of
Karwa, Krivitsky and Slavkovié¢ (2017), which is formally the same as the noisy network
structure adopted in Chang, Kolaczyk and Yao (2022). This approach releases a jittered ver-
sion of the entire network. The word ‘jittering” means that a small amount of noise is added
to every single data point (Hennig, 2007).

For Z specified just after (2.1) above, we define a data release mechanism as follows:

(2.3) Zij=Xijl(eij=0)+1(e;;=1)

for each (4, j) € Z. In the above expression, {&; ;}; j)ez are independent random variables
only taking three possible values —1,0 and 1 with

(24) ]P)(EiJ' = 1) =, ]P)(EiJ' = O) =1l—a-— ,8 and ]P’(Ei,j = —1) = ,8,

where «, § € [0,0.5]. For an undirected network, Z; ; = Z;; for j > 4. Then it follows from
(2.3) and (2.4) that

(25) ]P)(ZiJ =1 ’ XZ'J' = O) =« and ]P)(ZiJ =0 ‘ Xi,j = 1) = ,8

Furthermore the proposition below follows from (2.2) and (2.5) immediately. See also Propo-
sition 1 of Karwa, Krivitsky and Slavkovié (2017).

PROPOSITION 2. The data release mechanism (2.3) satisfies w-edge differential privacy

with
4 « 15} l—-a 1-p
m = log ¢ max —5'1-a’ B « .

REMARK 1. Notice that

@y l-a-p B _, l-a-p

1-8 1-8 7 l1—a l—a

1— l—a— 1- —a—
C 14 o ﬁ, 5:1+u7
B 5 o a

where 1 — o — 8 > 0. Then the differential privacy parameter 7 given in Proposition 2 can
be reformulated as

7T=10g{1+(1—a—5)max<—ﬁ,—ﬁ,%, é)}

_ o Bmax (L VL 1-a-§
_log{l—i—(l a— f)ma <ﬁ’a>} IOg{1+min(a,5)}'

Recall «, 5 € [0,0.5]. The maximum privacy is achieved by setting « = § = 0.5, as then
7 =0.By (2.3)and (2.4), Z; ; = I(e; ; = 1) then, i.e. Z carries no information about X. In
order to achieve high privacy, we need to use large o and (. Due to «, 8 € [0,0.5], when
7w — 0, min(q, ) cannot converge to zero, which means there exists a constant € € (0,0.5)
such that min(«, 8) > € when ™ — 0. Hence, when m — 0, we have 7 < 1 — a — 3. In Section
3 below we will develop statistical inference approaches for the original network X based on
the released data Z with m — 0.

3. Differentially private inference for the 3-model. In this section we introduce a new
method-of-moments estimator for the parameters of the network S-model and characterize
the asymptotic behavior of this estimator, through which we discover an interesting phase
transition.



3.1. The B-model. The so-called 5-model (Chatterjee, Diaconis and Sly, 2011) for undi-
rected networks is characterized by p parameters 8 = (6,...,60,)" € RP which define the
probability function

exp(6; +6;)
1+exp(; +0;)’
The parameter 6; in this model has a natural interpretation as it measures the propensity of

node ¢ to have connections with other nodes. Namely, the larger 6; is, the more likely node ¢
is connected to other nodes. The likelihood function for S-model is given by

(3.1) P(X;;=1)= it

exp{(0; +6;)Xij}

X;0) = ’ Ui+ -+ Uyl
f( ) ) H 1—|—eXp(92+93) ocexp( 101 + + pp)7
OVHAS)
where U; = Z X ; is the degree of the i-th node. Hence the degree sequence U =
(Ur,....Up)" is a sufﬁ01ent statistic.

Denote by 8(U) = {#;(U),...,0,(U)}" the MLE for 8 based on U. For given degree

sequence U, O(U) must satisfy the following moment equations:

_ exp{0;(U) +0;(U)} .
Vi ]% 1+ exp{6;(U) + 6,;(U)}’ < bl

Unfortunately é(U) may not exist; see Theorem 1 of Karwa and Slavkovic (2016) for neces-
sary and sufficient conditions for the existence of (U). When 8(U) exists, Chatterjee, Diaconis and Sly
(2011) show that

(3.2) 6(U) — 6] < 0*,/1"}%]9

with probability at least 1 — Cyp~2, where C,, > 0 is a constant depending only on |6|.
For any fixed integer s > 1 and distinct ¢q,...,¢s € [p], Yan and Xu (2013) establish the
asymptotic normality of {0, (U),...,0, (U )}T as p — oo, which can be used to construct
joint confidence regions for (y,, ..., GZS)T. However, to our best knowledge, simultaneous
inference for all p parameters in the 5-model remains unresolved in the literature.

Karwa and Slavkovi¢ (2016) consider differentially private MLE for € based on a noisy
version of the degree sequence. More specifically, the noisy degree sequence in their setting
is defined as U + V, where the components of V = (V4,...,V,)" are drawn independently
from a discrete Laplace distribution with the probability mass function

(1—k)rll
1+k

for any integer v with x = exp(—n/2). Karwa and Slavkovi¢ (2016) propose a two-step pro-
cedure: (a) find the MLE U* for U based on U + V, and (b) estimate 8 by 8(U*). For
any fixed integer s > 1 and distinct ¢y,...,¢s € [p], Theorem 4 of Karwa and Slavkovi¢
(2016) shows that {6, (U*),.. l9gs(U*)}T shares the same asymptotic normality as
{6,,(U),...,0, (U)}" when 7 = (logp)~ /2. To appreciate this “free privacy’ result, let
us assume ﬁrst that 10|~ < C for some universal constant C' > 0. Then there exists a univer-

sal constant C' > 1 such that C~!p < min;ep, Ui < max;ep, Ui < C'p holds almost surely as
1/2

P(V=v)=

p — oo. On the other hand, when 7 < (logp)~"/¢, Lemma C in the supplementary material
of Karwa and Slavkovi¢ (2016) indicates that |U* — Ul < v/6p'/2log!/? p holds almost
surely as p — oo, which implies that U* is dominated by U. Based on this result, Theorem
3 of Karwa and Slavkovi¢ (2016) shows that é(U*) exists and is unique and can be used to
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estimate @ with uniform accuracy in all coordinates when 7 < (log p)~ /2. However, when
7 < (logp)~1/2, the asymptotic behavior of §(U*) is unknown.

Our interest in this paper is on differentially private estimation based on released data
Z = (Z; j)pxp generated by the more general jittering mechanism (2.3). Remark 1 in Section
2.2 shows that Z is w-differentially private with 7 < 1 — a — 3. To gain more appreciation of
the impact of the privacy level 7 on the efficiency of inference, we introduce a new moment-
based estimation for @ based on Z. We then establish the asymptotic theory under the setting
that p — oo and 7 may vary with respect to p. Of particular interest is the findings when = —
0 together with p — oo. It turns out the asymptotic distribution of the new proposed estimator
depends intimately on the interplay between 7 and p, exhibiting interesting phase transition
in the convergence rate and the asymptotic variance as 7 decays to zero as a function of p.
See Theorem 1 and Remark 3(a) in Section 3.3. To overcome the complexity in inference
due to the phase transition, a novel bootstrap method is proposed, which provides a uniform
inference regardless different phases. In addition, it also facilitates the simultaneous inference
for all the p components of 6 as p — cc.

3.2. A new moment-based estimator. Under the 5-model (3.1), it holds that
P(Xi,;=1)
: = 0; +0;
B(X,,=0)  oPit)
for any i # j, which implies
P(Xi=1)P(Xi,; = 0)P(Xy; =1)

33
3-3) B(X, = 0)B(X,; = ))P(Xs, = 0)

=exp(20p), i#j#L.

Since only the sanitized network Z = (Z; j)pxp, defined as in (2.3)-(2.5), is available, we
represent (3.3) in terms of the probabilities of Z; ;. For 7 € {0,1}, put

pr(@)=(z—a) (1= B—a)"
with = € {0, 1}. Then for any i # j,

E{¢o(Zij)} _E{yi(Zij)}

d PX;:,=1)= .
T —a—p W PX=D=5773

To simplify the notation, we write ¢ (Z; ;) as ¢(; j) . for any i # j and 7 € {0,1}. Since
{Z; ;- i < j} is a sequence of independent random variables and Z; ; = Z;; for any i # j, it
follows from (3.3) that

(3.4) P(X;;=0)=

E{‘p(i,é),lSD(i,j),O‘;D(Z,j),l}
E{©,0,096,5),19,5),0}

(3.5) =exp(20p), i#j#L.

For each ¢ € [p], let

1

(3.6) W,lzm Z E{®@,0,196,5),000,5),1} >
i ems
1

(3.7) 2= Y E{panopainieenols

e (i.j)EM.e

where Hy = {(4,7) : i,j # ¢ such that i < j}. By (3.5), we have

1
6, = - log <@> .
2 He2



8

Hence a moment-based estimator for 6, can be defined as

“ 1 [
(3.8) 0, = = log <@> :
2 fhe2
where
A 1
(3.9) fe1 =" D Pa01PM6) 0P
|He| 4
(4,7)EH.e
1
(3.10) 2= D 0009601950
(4,7)EH.e

3.3. Asymptotic properties and phase transition. We always confine (o, ) € M(~;C1)
with
My Cr) = {(a,8): C1 <a,$<0.5,1—a— =7}

for some v € (0,1] and C; € (0,0.5). Our theoretical analysis allows «y to be a constant, or
to vary with respect to p. Of particular interest are the cases when v — 0 (at different rates)
together with p — co. When (a, ) € M(+;C1) for some fixed constants C; € (0,0.5), it
follows from Remark 1 in Section 2.2 that the privacy level m =< .

3.3.1. Consistency. Proposition 3 below presents the consistency for the moment-based

estimator ég defined in (3.8), which indicates that 8, can be estimated consistently under the
edge m-differential privacy with 7 — 0, as long as 7 > p~ /3 logl/ 6

CONDITION 1. There exists a universal constant C's > 0 such that |0],, < Cs.

PROPOSITION 3. Let Condition 1 hold and («, ) € M(~y;Cy) for some fixed constant
C1 € (0,0.5). If v > p~'/310g"/® p, it then holds that

10g1/2 10g1/2
s =0 =0y (2 ) 400 ().

REMARK 2. (a) By Condition 1 and (3.4), we know

min min E = max max E{y; ,
{01} i,j: 17 {90 7'} 7= rE{01} i) 1% {90(2,]),7'}

which implies

min min = = max max
ke{1,2} telp }'u 7 ke{1,2} ¢€(p] Bek

Lemma 1 in the supplementary material shows that

logl/2 2 logl/2 vlogp
gy g el =00 (P52) 4 0, (552 ) <00 (2).

To make (fi¢ 1, fie2) be a valid estimate of (g1, pr2), we need to require p—* logl/zp =
o(7*), v2p~/210g? p = o(4*) and vp~' log p = 0(4*). Hence, we need the restriction >
p /3 logl/ 6 p. Notice that the privacy level 7 = ~. In order to ensure the consistency of 6y,
the edge differential privacy level 7 must satisfy condition 7 > p~1/3 logl/ 6p.
(b) Recall ¢; ; involved in the data release mechanism (2.3) for Z; ; is a discrete random
variable that only takes three possible values —1,0 and 1. When oo = 8 =0, ¢; ; = 0, and
our moment-based estimator (3.8) is then constructed based on the original network X. By
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setting v = 1 in our proof of Proposition 3, we can establish the following convergence rate
for our moment-based estimator based on the original network X:

10g1/2
IZH?;<|94—94| = <17/2> ,

which shares the same convergence rate of the MLE of Chatterjee, Diaconis and Sly (2011);
see (3.2) in Section 3.1.

3.3.2. Asymptotic normality. Put N = (p—1)(p —2). Proposition 4 gives the asymptotic

expansion of 0, — 0, which can be obtained from the proof of Theorem 1 in Section B of the
supplementary material. For any 7 # £, let

1 1 1
BAl)  Ny=—— E [—E{SD(Z,j),l}E{(P(i,j),O} + —E{p )0 E{¢a .1} -
-2 Jiie LHe He,2

PROPOSITION 4. For any i # j, write Z; ; = Zi j — B(Zi ;). Let Condition 1 hold and
(v, B) € M(7; Cy) for some fixed constant Cy € (0,0.5). If v > p~Y/31og® p, it then holds
that

00— 0p="Ty1 +Tpo+ Ry,

where

- 1 pegt ez 5 5 s . 1 .
Tia = N Z < ) ) ZipZejZij and Tyo = 1 Z NieZip
igritg g N CHETHE L Py

satisfy Tg’l = Op(’y_?’p_l) and T€,2 = Op(’y_lp_l/2), and the remainder term Ry satisfies
Ry =0p(vp7?) + Op(v?p " logp).

The leading term in the asymptotic expansion of 0, — 0, will be different for different
scenarios of ~: TM’ a partial sum of independent random variables, serves as the leading
term if v > p_1/4, Tg,l + Tg,g is the leading term if v =< p_1/4, and T&l’ a generalized U-
statistic, is the leading term if p~1/% > ~ > p~1/310g!/% p. Such characteristic will lead to
a phase transition phenomenon in the limiting distribution of the proposed moment-based
estimator. Put

(3.12) = Z A7 Var(Z; )
1:17#£L

~ 1
G13) b= <M> S Var(Zio)\Var(Zey)Var(Zj)
2N\ etz oy

THEOREM 1. Let Condition 1 hold and (o, ) € T € M(~;Ch) for some fixed constant
Cy €(0,0.5). Let 1 <ty < --- < Ls < pbe any s given indices for some fixed integer s > 1.
As p — oo, the following three assertions hold.

(@) If y>> p~ /4, then

(r— )1/2dlag(b 2 '-754_51/2)(9}1 00,y 00, — 0,)" = N(0,L)

in distribution.
) If p~ />~y > p~1/31og! /O p, then

NY2diag(b, %, 0, %) (O, — 00,00, — )" — N(0, L)
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in distribution.
() If y=p~ Y4 then

N2 diag[{(p — 2)be, +be, } %, {(p = 2)by, + e}/
X (ézl — 951, .. .,ézs — HgS)T —)N(O,IS)

in distribution.

REMARK 3. (a) Theorem 1 presents the asymptotic normality of the proposed esti-
mator when p — oo and also, possibly, 7 < v — 0. It can be shown that b, < ~~2 and
by =< 75 under Condition 1. The limiting distribution depends on the relative rates of p
and v intimately; yielding an interesting phase transition phenomenon in the convergence
rate. More precisely, when v > p~'/* (including the case v is a fixed constant), we have
0, — 6¢) = O, (p~'/2~4~1). On the other hand, |0, — 6| = O, (p~"/*) when ~ =< p~/4, and
Op(p~1y™3) when p~1/4 > v > p=1/3 log!/% p.

(b) The asymptotic normality of the proposed moment-based estimator with the original
network X can be also established. By setting v =1 (i.e. « = 8 = 0) in our technical proof
of Theorem 1(a), we can show pl/zbz_l/2 (0 — ;) — N(0,1) in distribution.

(¢) Theorem 1 cannot be used to construct confidence intervals for 6, directly since we
would have to overcome two obstacles: (i) to identify the most appropriate phase in terms of
relative sizes between ~ and p, and (ii) to estimate by and by which determine the asymptotic
variances. For (ii), we give their estimates in the Appendix. Unfortunately (i) is extremely
difficult if not impossible, as in practice we only have one  and one p. Proposition 6 in the
Appendix shows that (ii) is only partially attainable, as, for example, b, cannot be estimated
consistently when p~1/4 < ~ < p=Y/410g!/* p. In practice, we always need 7 — 0 for retain-
ing the privacy. With m — 0, (i) can be overcome from a new perspective. More specifically,
let vy = (p — 2)by + by for any £ € [p]. Note that by < v~ and by < v~ under Condition 1,
and v =< m when 7 — 0. Then (p — 2)by /vy — 1 when 1>~ > p~ /4, and by /vy — 1 when
v < p~ Y4 Recall N = (p—1)(p—2). Hence, as < m — 0, the three asymptotic assertions
in Theorem 1 admit a uniform representation:

N/ diag(Vg_ll/27 .- -71/@:1/2)(@51 —0p,,...,00, — 0,)" > N(0,1,)

in distribution. However, even with the additional requirement 7 — 0, we still cannot obtain
a consistent estimate for 4 by the plug-in method with estimating b, and b, separately for
all y>>p~ /3 logl/ 6 p. A novel adaptive bootstrap procedure will be developed in Section 4,
which provides a unified estimation procedure for v, when v =< 7 — 0 across the three dif-
ferent phases. On the other hand, the inference with ~y being a fixed constant can be obtained
based on Theorem 1 with the estimated by specified in the Appendix.

4. Adaptive bootstrap inference. The goal of this section is primarily two-fold. First,
we construct a novel bootstrap confidence interval for 6, which is automatically adaptive to
the three phases identified in Theorem 1. Second, we leverage the new bootstrap procedure
with Gaussian approximation to provide simultaneous inference for all p components of 0
as p — oo. Additionally, we provide an algorithm for data-adaptive selection of a working
parameter in our approach. In the sequel, we always assume that the privacy level 7 — 0
together with the number of nodes p — co.
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4.1. Bootstrap algorithm and simultaneous inference. As we have discussed in Remark
3(c), it holds that

(4.1) N2 diag(v, 2, vy ) 6oy — 60y, B0, — 60)T = N(0,L)

in distribution as v < 7 — 0, where vy, = (p — 2)by + Bg. Now we reproduce this structure
in a bootstrap world based on the available network Z. The goal is to estimate v, adaptively
regardless of the decay rate of .

Recall Z = {(7,7) : 1 <i < j < p}. For a given constant ¢ € (0,0.5), we draw bootstrap

samples ZT = (ij)pxp according to
4.2) Zl =21, =ZijI(nij=0)+1(n;=1), (i,j)€T,

where {n;, j}(i, j)ez are independent and identically distributed random variables only taking
three possible values —1,0 and 1 with

P(ni,j:0)21_257 P(T]z7j:1):5 and P(T]z7j:—1):(5
For i # j and 7 € {0, 1}, put
L) =fa — 5 —a(l—20)}7{1 — 6 — B(1 —20) — 2}~
T

with z € {0,1}. To simplify the notation, we write @T(ZT ) as Plii)r for any ¢ # j and
7 € {0,1}. Note that

E{¢l; 0 ond E{@(; .1}
(1-20)(1-a-p) (1-20)(1—a-p)

For any given (7, 7) such that ¢ # j, we know ZJr is independent of {Zj~ {i,7} N {3, 5} <
1}. Hence, it follows from (3.3) that

P(X;;=0)=

),

P(Xij=1)=

4.3)

E{‘PTM 1‘PTi'0‘PT£ 1}
PO —exp(200), i A AL

E{(i,0%463)1 210310}

which is a bootstrap analogue of (3.5). Similarly, we define a bootstrap estimator for 6, as:
AT
A1 H
(4.4) 0 = - log < f1> :

where

.I>
’ ( ; (4,0) 1('0 (4,9) 0('0([,9)

Z M 0(’0 (4,4) 1(’0(&3)
(2 j)EH

Such defined i ,u 01 and [i Nz 5 are, respectively, the bootstrap analogues of fig 1 and fig o defined
as (3.9) and (3. 10) For jig.1, pte2 and \; ¢ defined as (3.6), (3.7) and (3.11), we define their



12

bootstrap analogues, respectively, as

] Z E{90&,@),190&,]'),0(’0&73')71} '
(4,7)EH.e

1 i T T
7] Z E{‘P(i,e),o‘:@(i,j),l‘p(&j)70}’
(4,7)EH.e

1 1 1
p—2 { —E{el,; JE{@L‘J),O}JFMT E{le.0 E{ i1}
0,2

)‘i,f =
jij#ei SHe

Then é; admits a similar asymptotic property as (4.1). To present it explicitly, we let

(4.5) vi=(p—2)bl+b), telp,
where
b}; =— Z /\ZEVar(ZT ),
p= i 9F£L
T T\ 2
1 (M1t Hyo
bT I <ﬁ> Z Var(Zié)Var(ZgJ)Var(le).
Poibes 7 djiitj i

THEOREM 2. Let the conditions of Theorem 1 hold, and § € (0,c| for some positive
constant ¢ < 0.5. Asp— 00, if 1 >v> p1/3 logl/6 p, the following two assertions hold.
(@) Let 1 <ty < --- <Ly <pbeany s given indices for some fixed integer s > 1. Then

N2 diag(vl 2T 6]~ 6uy,. 0]~ 60)T 5 N(0,L)

in distribution.
(b) maxcy |1/21/[1 — 1] =0(9), where vy is specified in (4.1).

Theorem 2 indicates that z/g Jve — 1 forany 1> v > p /3 logl/ 6 p provided that we set
§ = o(1). For fixed s > 1 and given 1 < {1 < --- < £, < p, we can draw bootstrap samples Z'
as in (4.2) with some § = o(1), and compute the bootstrap estimate (9 GT )" defined in
(4.4) based on Z'. We repeat this procedure M times for some large 1nteger M and compute

7}, = MZ{@ —01,, kels),
with 9;[ =M QT , where {9T A(m) }T is the associated bootstrap esti-
mate in the m-th repetltlon Then a conﬁdence reglon for (0y,,...,04.)" can be constructed

based on the asymptotic approximation

NY2 diag(of 72, 0T B — 00,0, — 0,)T A N(0,1,).

Importantly, we note that in both Theorems 1 and 2, s is a fixed integer when p — oo.
Hence the inference methods presented so far are not applicable to all p components of
0 simultaneously. However, a breakthrough can be had via the Gaussian approximation
in Theorem 3 below. To our best knowledge, this is the first method for simultaneous in-
ference for all the p components of 6 in the S-model. Write 0= (él, . ,ép)T where ég
is the proposed moment-based estimator given in (3.8) based on the sanitized data Z. As
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shown in Proposition 4, the leading term of 6 — 6 cannot be formulated as a partial sum
of independent (or weakly dependent) random vectors, which is different from the stan-
dard framework of Gaussian approximation (Chernozhukov, Chetverikov and Kato, 2013;
Chang, Chen and Wu, 2024). Hence the existing results of Gaussian approximation cannot
be applied directly to obtain Theorem 3, which requires significant technical challenge to be
overcome in our theoretical analysis.

THEOREM 3. Let Condition 1 hold and («, B) € M(v; C1) for some fixed constant Cy €
(0,0.5). As p— 00, if 0 < § < (plogp) ! and 1> > p~1/310g' /2 p, then
sup [P{NY2(VH)~V/2(6 - 9) <u} —P(¢ <u)| -0,

ucRr

where VT = diag(ui, ...,v)), and & ~ N (0, L).

Let¢& = (£1,...,&)" ~N(0,1,). Forany J = {¢1,...,4s} C [p], write
Vvl =diag(v) ,....v} ), 87 ="(0s,...,0,)",
07 =00,.-.00)", €&7="(%c,---,&.)".

Following the same arguments in the proof of Proposition 1 in the supplementary material of
Chang et al. (2017), we can obtain from Theorem 3 that

Sl}psug |P{N1/2|(vf7)-1/2(éj —07)|00o Su} —P(|€ |0 <u)| =0
ue
as p — oo. Given o € (0,1) and J C [p],

/T

46)  Og.:= {a eRVLNY2|(VE)T2(67 —a)|o <27 <%> }

is a 100 - a% confidence region for 6 7, where ®(-) is the cumulative distribution function of
the standard normal distribution. We refer to Section 4 of Chang et al. (2018) for applications
of this type of confidence region in simultaneous inference. If +y is a fixed constant, Theorem
3 still holds with replacing VT by (p — 2) - diag(b1,...,b,) where by is given in (A.6) in
the Appendix. If we set &« = 8 = 0 in the jittering mechanism (2.3)—(2.5), then v =1 in this
case and the released data Z is identical to the original data X. Our simultaneous inference

procedure still also works in this case.

4.2. Adaptive selection of . The tuning parameter ¢ plays a key role in our simultaneous
inference procedure. We propose a data-driven method in Algorithm 1 to select §. To illustrate
the basic idea, we denote by 1/2(5) the associated z/g defined in (4.5) with 0 used in generating
the bootstrap samples Z in (4.2). If {1}, 7 are known, the ideal selection for the tuning
parameter ¢ should be

dopt = argminng;( |1/g(5) —vy.

Unfortunately, {1y }¢c 7 are unknown in practice, as they depend on the unknown parameters

01,...,0,. A natural idea is to replace v,’s by their estimates. Recall gy =271 log(,&g,l,&zzl)
with
. 1
He1 = m Z P(i,0),1(i,5),09(€,5),1 5
(4,5)€He

N 1
Me,2=m Z P(i,6),09(i,5),1P(£,5),0 -
(4,7)EH.e
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Due to the nonlinear function log(-) and the ratio between fi, ; and /i 2, éz usually includes
some high-order bias term. More specifically,
__— oo o — 1 9)2 (fp1—pr)?  a
Oy — 0, = el — fet He2 — He2 i (M,z 2#@,2) o (,Um 2/%1) YRy,
2101 24102 4pg o Ay

high-order bias

where Ry is a negligible term in comparison to the high-order bias. Although the high-order
bias has little impact on the estimation of ¢y, it may lead to a bad estimate of vy if we just

plug-in él, ...,0, in the nonlinear function v, which depends on 01, ...,0,. Hence, when
we replace {vy}sc7 in Algorithm 1, we use their associated estimates with bias-corrected
Glfc, .. ,GEC. Based on the optimal d,p selected in Algorithm 1, we can replace the values

{1/; }ee7 in (4.6) by {ﬁg (dopt) }ee s specified in Algorithm 1 to construct a 100 - a% simulta-
neous confidence region for 8 7 in practice.

5. Numerical study.

5.1. Simulation. In this section we illustrate the finite sample properties of our proposed
method of estimation and inference for the unknown parameters in the S-model by simu-
lation. For p € {1000,2000}, we draw 6,...,0, independently from A/(0,0.2), and then
generate the adjacency matrix X according to the S-model (3.1). For a given original net-
work X, we set a = 3 € {0,0.1,0.2,0.3} in the data release mechanism (2.3) and (2.4) to
generate Z. Note that Z = X when a = 3 = 0.

Based on the released data Z, we applied the moment-based method (3.8) to estimate
0 = (61,...,0,)7, and then calculated the estimation error L(6) = p~!|@ — 8|%. For com-
parison, we also considered to apply the MLE of Karwa and Slavkovi¢ (2016) to the degree
sequence of the released data Z. Table 1 reports the averages, medians and standard devia-
tions of the estimation errors over 500 replications. The proposed moment-based estimation
performed competitively in relation to the MLE, though the MLE is slightly more accurate
overall. However the MLE method is memory-demanding when p is large. For example with
p = 1000 and o = 8 = 0.1, the step generating a graph with given degree sequence (i.e.
Algorithm 2 of Karwa and Slavkovi¢ (2016)) occupied 3.91 GB memory. In contrast, the
newly proposed moment-based estimation only used 38.19 MB memory. Furthermore, the
MLE is excessively time-consuming computationally when p is large. See Table 1 for the
recorded average CPU times for each realization on an Intel(R) Xeon(R) Platinum 8160 pro-
cessor (2.10GHz). With p = 1000, the average required CPU time for computing the MLE
once is over 471 minutes with the original data X (i.e. = § = 0) and is almost double
with the sanitized data Z (i.e. o, 5 > 0). It is practically infeasible to conduct the simulation
(with replications) for all scenarios with p = 2000, for which we only report the results with
o = [ =0 with the average CPU time 5095 minutes per estimation.

We note that Algorithm 2 of Karwa and Slavkovié¢ (2016) might be made more efficient if
it is modified to directly estimate the node degree sequence without actually producing the
intermediate graph, the latter step which requires MCMC. Additionally, such an approach
might also help with convergence issues. In particular, and as an important caveat to the
above results, we note that in order to achieve MLE estimates for 500 trials in our simulations
it was necessary to discard a nontrivial fraction of trials for which the MCMC algorithm
failed to converge. Specifically, when oo = 5 = 0.1, 0.2, and 0.3, the proportion of trials that
needed to be discarded were, respectively, 3%, 10% and 21%. That is, MLE convergence was
increasingly problematic with increasing noise level and hence with increasing privacy. No
trials were discarded for our proposed moment-based approach.

Based on our moment-based estimator @, we also constructed the simultaneous confidence
regions (4.6) for all the p components 61,...,0,. To determine the tuning parameter 9, we
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Algorithm 1 Selecting tuning parameter §

DN =

=

10:

11:
12:

13:
14:

15:

: obtain {0,})_ . {1p1})_, and {1y o})_, based on (3.8), (3.9) and (3.10), respectively.

calculate
. _(1—a—,3)exp(éi+ég) 1—a-p (1_a_ﬂ)eXp(A£+éj)
(6:5,6:1 L+exp(0;+0p)  1+exp(d;+0;)  1+exp(fy+0;)
& l—a-p (l—a—ﬂ)exp(z—&—é-) 1—a-p
30271 L oxp@y+0,)  1+exp(By+0;) 1+ exp(fy +0;)
repeat
leave out one (i, j) € Hy randomly and denote by H, the set including the rest elements in H.
calculate

- 1 R - 1 .
== DL P01 ™ Re= o= DL P

Mol igren; Mol igren;
which provide the estimates of 1y 1 and py o, respectively.
calculate
. —1--2/. ~ 2 —1-—2/ ~ 2
biasp =4 " fip 5 (fig,2 = fg2)” =4 iy q (Rga — frg1)”
until M replicates obtained, for a large integer M, and get biasgl), .. ,biaséM).
: approximate the high-order bias in ég by
M
— 1
biasy = 7 Z biasyn) ,
m=1
and obtain é]l?c = ég — b/i\asE, the bias-correction for ég.
calculate
~be 1 ~ ~bc 1 ~
MZ71 = |H£| Z SO(Zvjvé)vl and MZ’Q = |HZ| Z QD(ZM],Z),Z ’

where ‘»Z(i 3,0),1 and 4,5(2 j,0),2 are defined in the same manner as 4,5(2-7 7,0),1 and ‘ﬁ(i, 3,0),2° respectively, with
replacing {95}6 1 by {9bC f 1
calculate I/E =(p— 2)bbC + Z;bc where l;EC and Z;]ZDC are defined in the same manner of by and by specified

as (A.6) in the Appendix with replacing (fiy 1, i 2. {Hk}k 1) by (u]l?(i [LE’% {é}gc}izl)
repeat

given ¢ > 0 and draw bootstrap samples 7t = (Z;r j)pX p asin (4.2), calculate the bootstrap estimate é}

defined in (4.4) based on the bootstrap samples VAR

until M replicates obtained, for a large integer M, and get é;’(l), .. ,é}’(M).
calculate
Fogy— B2 N gghm) Gt
N AT,(m A
Vz(‘s)zﬂ > 10 —0,}
m=1

with 6f = M=t oM g1 tm),
select

2 . N ~bc
dopt = arg min max I/T 0)—1uy .
opt g6>OZEJ|Z() 0|

applied the data-driven Algorithm 1 with M = 500. Table 2 lists the relative frequencies, in
500 replications for each settings, of the occurrence of the event that the constructed confi-
dence region contains the true value of 8. At each of the three nominal levels, those relative
frequencies are always close to the corresponding nominal level.
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TABLE 1
Estimation errors of the proposed moment-based estimation and the maximum likelihood estimation for 0 in the
B-model (3.1). Also reported are the average CPU times (in minutes) for completing the estimation once for
each of the two methods.

Proposed method Maximum likelihood estimation

P Summary statistics a==0 a==01 a==02 a==03 a==0 a==01 a==02 a=p=03

1000 Average 0.0041 0.0065 0.0117 0.0274 0.0062 0.0057 0.0107 0.0239
Median 0.0041 0.0065 0.0117 0.0274 0.0041 0.0057 0.0107 0.0239
Standard deviation 0.0002 0.0003 0.0006 0.0012 0.0085 0.0002 0.0005 0.0015
Time (min) 1.0340 1.0439 0.9191 0.8540 471.6290 850.2369 754.2811 780.9615
2000 Average 0.0020 0.0032 0.0058 0.0133 0.0058 NA NA NA
Median 0.0020 0.0032 0.0058 0.0133 0.0043 NA NA NA
Standard deviation 0.0001 0.0001 0.0002 0.0004 0.0019 NA NA NA
Time (min) 4.2333 4.8707 3.7540 3.7256 5095.0520 NA NA NA
TABLE 2

Empirical frequencies of the constructed simultaneous confidence regions for 0 covering the truth in the
B-model (3.1).

P Level a=06=0 a==0.1 a==0.2 a=£=0.3
1000 90% 0.876 0.868 0.910 0.888
95% 0.932 0.928 0.958 0.948
99% 0.984 0.982 0.982 0.992
2000 90% 0.900 0.876 0.898 0.896
95% 0.950 0.956 0.946 0.952
99% 0.988 0.990 0.996 0.992

5.2. Real data analysis. Facebook, a social networking site launched in February 2004,
now overwhelms numerous aspects of everyday life, and has become an immensely popu-
lar societal obsession. The Facebook friendships define a network of undirected edges that
connect individual users. In this section, we analyze a small Facebook friendship network
dataset available at http://wwwlovre.appspot.com/support . jsp. The network
consists of 334 nodes and 2218 edges.

We fit the S-model to this network. As an illustration on the impact of the ‘jittering’, we
identify the nodes with the associated parameters equal to 0 based on both the original net-
work and some sanitized versions. More specifically, we first consider the multiple hypothesis
tests:

Hyp:0,=0 versus Hy :0,#0

for 1 < ¢ < 334. The moment-based estimate § = (él, . .,9A334)T based on the original
data X is calculated according to (3.8). Theorem 1 indicates that the p-value for the /-
th test is given by 2{1 — @(\/ﬁl;f/ﬂéd)} with b, defined as (A.6) in the Appendix.
Note that égl and égz are asymptotically independent for any ¢; # /5. The BH procedure
(Benjamini et al., 1995) at the rate 1% for the 334 multiple tests identifies the 10 nodal param-
eters (02, 021, 033, 051, 078, 0186, 0202, 0211, O263, B272) being not significantly different from 0.
Put 7 ={2,21,33,51,78,186,202,211,263,272}. We consider now the testing problem for
the single hypothesis setting

(5.1) Hyp:07=0 versus H;:07#0

based on both the original network X and its sanitized versions Z via jittering mechanism
(2.3) with & = 8 =10.1,0.2 and 0.3. Let ¢y,...,{;000 be independent and N (0,I;p). By
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Theorem 3, the p-value of the test for (5.1) based on Z is approximately

1000

1 I
S Gl = V333 % 332V, 2017 0}
m=1

1000

where 9f7z) is the estimate of 6 7 based on Z by the moment-based method (3.8), and A2 7 1s

the estimate of the asymptotic covariance of v/333 x 332{9g) —0s7}. Whena=£5=0,Z=
X, the p-value for testing (5.1) based on X is then 0.1019. As the test based on Z depends on
a particular realization when av = 5 = 0.1, 0.2 and 0.3, we repeat the test 500 times for each
setting. The average p-values of those 500 tests (based on Z) with « = 5= 0.1, 0.2 and 0.3
are, respectively, 0.1276, 0.1522 and 0.1874, which are reasonably close to the p-value based
on X. The standard errors of the 500 p-values are 0.0795, 0.1281 and 0.1408, respectively,
fora = =0.1,0.2 and 0.3.

This small illustration suggests that, with increasing edge noise (and hence increasing
privacy), the resulting p-value is increasingly over-estimated with increasing standard error.
Both trends are to be expected — since with increasing edge-noise the signal will be weakened
— and merit future study.

6. Extension to the sparse 3-model. Under Condition 1 imposed on the S-model (3.1),
we have

min P(X;,;=1)> 2Py
i,ji<] 1+ exp(—c)

for some positive constant ¢, which implies the expected number of edges of the network
should be of order at least p? and thus the network will be dense. In this last section we
illustrate how our results may be extended to the case of sparse networks, through several
additional results. A full generalization of our results for the dense case, inclusive of the
bootstrap-based inferential procedure, is beyond the present scope.

To model the sparse networks, Chen, Kato and Leng (2021) consider the sparse S-model
defined as

0; + 0,
6.1) P(X,, =1) = —SPET0i+0;)
1 +exp(&+0; +0;)
where ¢ € R and 6 = (01,...,0,)7 € RE are both unknown parameters with |8]o < p
and mingej,) 6, = 0. Denote by S the support of 8, that is S = {£ € [p] : f, # 0}. Write

|S| = s. Given some constants w; € [0,2) and wa € [0,1) such that 0 < w; — wy < 1,
Chen, Kato and Leng (2021) consider the reparametrization

£=—wilogp+£ET and ég:w2logp—|—éj forall/e S,

where || = o(log p) and maxses |0 | = o(logp). Let

(6.2) 9£=§+9£7 t€[p].

The sparse 5-model (6.1) can be reformulated as the standard 5-model (3.1) with

2L wsllogp, ifwi # 2wy,

2

~

100

=o(logp), if w; =2ws.
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Applying the estimation procedure given in Section 3.2 to the sanitized network Z =
(Z;,j)pxp defined as in (2.3)—(2.5), we can also obtain the moment-based estimator 6, de-
fined as (3.8) for the unknown parameter d; given in (6.2). For the positive stochastic se-
quence {a,} and the positive sequence {c,}, we write a, = O, (c,) if a, = Op(pcc,) for
some sufficiently small fixed constant € > 0. Proposition 5 gives the convergence rate of
maxe(p| |0¢ — 0¢| under the sparse 5-model.

PROPOSITION 5. Let (o, 3) € M(y,Ch) for some fixed constant Cy € (0,0.5). Write
Xp = exp(—[¢F| V maxes [0)]). If0 <ws <wy < 1/2, then

A - [ log'?p ~ slog'/?p - [ log'?p
el 16 =0 =0y <7p1/ 2= ) TP\ S ) TR S5pTem
provided that ~ > X;8(Sp_3/2+wl+w2 10g1/2p + p—1/3+2w1/3 10g1/6p)‘

REMARK 4. Under the assumption |£F| V maxses |0, | = o(logp), we know Xyt =
exp{o(logp)}. As shown in Section F of the supplementary material, there exists some uni-
versal positive constant ¢ such that

A e logl/2 P S logl/2 P logl/2 P
w0 =35 { 00 (1058 ) + 0 (s ) o (et

provided that v > X;8(sp_3/2+w1+w2 log!/? p + p=1/3+201/310g1/6 ) If the network X is
dense with wy = 0, |£7| < C and maxycs ]éﬂ < C for some universal positive constant C,
it follows from Proposition 5 that

. 1 1/2 1 1/2
max|0; — 6, = O, <°g712p> +0, <¥>
Celp] ypY/ v3p

provided that v > p~1/310g'/% p, which is identical to the result in Proposition 3.

By (6.2) and s < p in the sparse 3-model, we can estimate ¢ and 6, as follows:

~ 2 ~ s ~
(6.3) 525294 and egzeg—g.
Le(p)

Due to ]53 — 0y < |6y — 04| + |€ — €|/2 and

‘2 > (00— 0+ 6)

L€[p)

€ —¢l=

- 1
<2max|0, — 0, + O<S ng) ,
te[p) D
by Proposition 5, we have the following theorem.

THEOREM 4.  Let (o, 3) € M(v, C1) for some fixed constant Cy € (0,0.5). Write x,, =
exp(—[€T| V maxpes [0 |). If 0 < ws <wy < 1/2, then

. ([ log'?p ~ slog'/?p
£=¢1=0 <W> O <7p3/2‘““‘“’2

- [ log"?p ) <slogp> .
Op| —=—— O = 0, — 0
i p<’y3p1‘2“1 " p i 0o = 6l

provided that v > X;8(8p_3/2+w1 +ws log1/2 P+ p—1/3+2w1/3 log1/6 P).
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REMARK 5. For known (wj,ws) and S, Theorem 1 of Chen, Kato and Leng (2021)
specifies the convergence rates of the MLE for £ and {9}}563 based on the true net-
work X ratller than the sanitized network Z (i.e., « = 8 = 0 in our setting). Denote
by &t and 6, respectively, the MLE of ¢1 and é[ proposed in Chen, Kato and Leng
(2021). To simplify our comparison, we assume |£*| V maxses |0, | = O(1). Under the
restriction s = O{p(1=%2)/2=¢} for some sufficiently small constant ¢ > 0, Theorem 1(ii)
of Chen, Kato and Leng (2021) implies |£F — ¢*| = O,(p~'**/2) and |0 — 0| =
Op{p~ /3T @i1=w2)/2} for any ¢ € S. With known (wy,ws), we can obtain the following

estimators for £ and 9; based on f and 6, given in (6.3):
£+ :é—l—wl logp and §+ = ég —wslogp.

Recall v =1 — o — . By Theorem 4 with v =1 and s = O{p(1=+2)/2=¢} for some
sufficiently small constant ¢ > 0, it holds that [+ — &7 = O, (p~"/>T* log!/?p) and
maxc(y |0 — 0] = Op(p~/27*1 log'/? p), which are slower than the convergence rates of
the MLE considered in Chen, Kato and Leng (2021). Their method cannot be implemented
directly with unknown (w1, ws) while our moment-based method can still work.

APPENDIX

A brief discussion of the fundamental issue of estimating asymptotic variances in Theorem
1 is provided here. If we know the decay rate of y falls into which region, we may consider
to construct the confidence region of (6y,,...,0y )" based on Theorem 1 with the plug-in
method. To do this, we need to estimate by, ’s and by, ’s first. By (3.11), we can estimate \; ¢
by

1
(A4) =— > { P)IPGN0 ¢(67j>7o<ﬁ(i7j>71}
M£,2
J J#L
with fig 1 and fig o specified in (3.9) and (3.10), respectively. By the definition of Z; ;, we
have
a+(1—pB)exp(0;+6;) 1—a+Bexp(f;+6;)

Var(Z; ;) =
ar(Zi;) 1+ exp(0; +0;) 1+ exp(0; +0;)

for any ¢ # j. We can estimate Var(Z; ;) by

+(1-0) exp( i
14 exp(f; + 0,

A~

+6;) 1—a+Bexp(di+6)
3 .

— (8%
(A.5) Var(Z; ;) = =
(Z5) 1+ exp(6; + 6;)

Based on (A.4) and (A.5), we can estimate by and Bg, respectively, by

(A.6) = Z A2 Var(Z
1 1AL
7 1 [ iy + fu2 )\ U U U
by = — <7> > Var(Zi)Var(Ze;)Var(Zi ;).
2N\ frefue2 ey

The convergence rates of such estimates are presented in Proposition 6. The proof of Propo-
sition 6 is given in Section C of the supplementary material.
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PROPOSITION 6. Let Condition 1 hold and («, ) € M(~y;Cy) for some fixed constant
Cy € (0,0.5). If y > p~1/3 log!/S p, for any given ( € [p], it holds that

by B logp logl/2
b _1‘ _Op<’y4p> +Op<’v 2pl/2 )

7 log!/2 p log!/2 p
J—1‘:0p<0g >+Op<og1/2>.
by v3p P

For any fixed integer s > 1, Theorem 1 and Proposition 6 imply that

p"2diag(b, ... b, ) (@0, — Ou,,. ... 00— 00)T — N(O,L)

in distribution if v > p~'/*1og /44, and
pdlag(b V26V (e, — 60, B0, —6)T — N(0,L)

in distribution if p~1/31log"/% p <« ’y < p~'/4. Unfortunately, such plug-in method does not
work in the scenario p~ /4 <~ < p~4log 1/4 p since by is no longer a valid estimate for
be. On the other hand, it is dlfﬁcult to judge which regime the decay rate of ~ falls into in
practice with finite samples. Hence, the plug-in method is powerless practically.
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Throughout the supplementary material, we use C' and C to denote generic positive finite
universal constants that may be different in different uses. The following two inequalities will
be used in our proofs.

INEQUALITY 1 (Decoupling inequality, Theorem 1 of de la Pefia and Montgomery-Smith
(1995)). Let {U; } be a sequence of independent random variables on a measurable space

(J,S) and let {U } J € [k], be k independent copies of {U;}. Let f;, _;, be families of
functions of & variables taking (S x --- x S) into a Banach space (B, | - ||). Then, for all
n >k > 2 and t > 0, there exists a numerical constant C depending on & only so that

]P’{ S faa@ ol ulY) zt}

1<iy##ir<n
2 k
S faea @V U
1<iy o Aip <n

< Ck]P’{Ck

).

INEQUALITY 2 (Theorem 3.3 of Giné, Latata and Zinn (2000)). There exists a universal
constant L > 0 such that, if h; ; are bounded canonical kernels of two variables for indepen-

dent random variables Ui(l) and U }2), i,j € [n], then

n 1 . (2t 23 412

ij=1
for all ¢ > 0, where

A:,ma[x}”hi,j”om ZE{h2 U(l U(z))}
1,JEN
i,j=1
5= | Zwﬂ @O | Lo |.
7] .
00 j=1 oo

S1
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S2

—sup[ {Z’w o U}”)ﬁ(UJ”)w(UE”)}:

i,j=1
E{ ;:;ff(Ui(l))} <1, E{ igiw}”)} < 1] .

j=1
A. Proof of Proposition 3. Define

S.A.1) Go=PoL ang ¢ = P2
He.2 Wz

To prove Proposition 3, we need the following lemma whose proof is given in Section G.1.

LEMMA 1. Let Condition 1 hold and (o, ) € M(~y; Cy) for some fixed constant Cy €
(0,0.5). Then

log'/?p 72log!?p ~vlogp
kgﬁ’;}%ﬁ]{‘ﬂélﬂ_ﬂék’ < » +Op T +Op p .

By Condition 1,

min i1 <5° < max iy .
L€[p] L€[p)

If y>>p~1/3 logl/6 p, Lemma 1 implies

maX|W 1= pe1] = 0p(v?) = max|figo — il -
telp] P telp]

By (S.A.1), it holds that

—pen prea(fep — fe2)
Me,2 fLe2tbe,2

b—C=

fleq — pen  fed .
= — = (fug2 — pe2) + Re
e 2 /%72

where maxe ) [Re,1| = Op(v~%p~2logp) + Oy (v ?p~'log p). Thus,

lo 1/2 lo 1/2
maxiGe— i =0y (<252 ) + 0, (2R ) —oy(0).

Lelp

Since 0, =log((;)/2 and 6, = log({;) /2, by Taylor expansion, we have that
Py — ey P — e

A2 0, — 6
(S.A2) ) — 0= C(Cz Ce) + 2 s + Ry 3,
where
10gp> <logp>
Ryol = —= | +0 R
ey feal = <76p2 Pl ) = gyl
Therefore,

1 1/2
o, - egyzop<%) Lo

L€(p]

10g1/2
p( ypl/? )ZOP(l)'

We complete the proof of Proposition 3. O
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B. Proof of Theorem 1. For any 4,7,/ € [p], let ¥1(i,5;¢) = ©(i.0),19.,5),09(¢,5),1 and
Wa(i, §30) = @0, 090.4)1P(0.5).0- Note that v > p~1/3log!/ p. Write N = (p — 1)(p — 2)
and ©(; ) - = ©(i.j),r — E{#(ij),r}- As shown in Section G.1 for the proof of Lemma 1,

iy — e = ‘L S 16,55 6) — E{ (5,5;0) | Fe})

Hel (i,5)EH,

Vv
I

2 .
+ Z 6,01 EL0,5)1 E{ g 5),0}
NIRRT,

Nﬁljeylyg(l)
1 ; ;
tx 2 Lot B{eaol
i A
N71[Z1,2(2)

s — s = ﬁ S [Wo,56) — E{i,50) | F})

(Zvj)EH@

Iy 01

2 ;
N 2 PanoE{ee o E{pi.}
it i, 1,570

Nﬁllg,g’z(l)

1 . .
v D P00Pen) B}
0.2 i3, 17

N711212,2(2)

where Fy = {Z; ¢, Zy; : (1,7) € H¢}. For each given ¢ € [p], following the proof of Lemma
1 in Section G.1, we know that Iy 1 1 = Op(p™') = Ipa1, In12(1) = Op(v?p*/?) = I122(1)
and Iy 1 2(2) = Op(yp) = 11,2,2(2). Also, the remainder term Ry 3 in (S.A.2) satisfies Ry 3 =
Op(75p72) + Op(y~2p~1) for each given £ € [p]. By (S.A.2), we have

I I I 1 I 1
SR (N e12(1)  Loaa( )+Re,4,
2pe1 2pe2 21N 2p0o0N

~~

Tg,l th,z

(S.B.1) 0)— 0, =

where RZA = Op(7_6p_2) + Op(v_zp_l)- Write Zoi,j = Zi,j — E(ZZ,]) Then Qé(i,j),l = ZOZ'J'

and $(; j).0 = —Z;,;- It holds that

1 Pi,0,1P¢,5),1  P60,0P¢LN0 | 2
SB2)  Tu=-5 > { Al D) }Zm,
i.j: i, 6, He Hie2
1 ,
(S.B.3) Tra=—=> Mitis,
p i 9F£L

where \; ¢ is defined as (3.11). In Sections B.1-B.3, we will prove Theorem 1(a)-1(c) based
on (S.B.1)—(S.B.3), respectively.
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B.1. Case 1: v>>p~ Y% DuetoTy; = O,y 3p~'), by (S.B.1) and (S.B.3),

. 1 ,
Op—0p="Tyo+ Ry5= p—1 Z NieZio+ Ry,
p 1 1AL
where Ry 5 = O (y3p~1). Write Af ¢ =Ai¢. Under Condition 1, minye ) ming: j£¢ A7, <
1 = maxye[p max;. ¢ )\ZZ. Then

. 1 -
7(93 — 95) = pTl Z )‘MZM + R&G
1:17#£L
with Ry 6 = Op (v~ 2p~1). Given s different /1, . .., /5 € [p], we define an s-dimensional vec-
tor w; = (WZ’J, R WZ‘7S)T with Wi,j = )\;ké Z@gj . Then it holds that

J

. A 1
(S.B.4) YO, —Opys- -y 00, —0p,)" = =1 #Z: e w;+r

with [r|oe = Op(v7?p™1). Let by = (p— 1) 7' 3055 )\ZfVar(Zi,g). Notice that
1
— E Var(w;) = diag(by, 4, -, be,«) +O(p~1),
p—1_ .
109F . s

and {Wi}i#él,...,és is an independent sequence. By the Central Limit Theorem,

(p— )2y diag(b,, /... by L) (00, — Oy, B0, —02)T B N(0,1,).

él?* 7
Due to by, = +2by, we complete the proof of Theorem 1(a). O
B.2. Case2: p~'/* >~y > p~1/31log"Sp. Dueto Tys=0,(y 'p~'/?), by (S.B.1),
(S.B.5) 00— 60 ="Ty1 + Ryx

with jo = Op('y_Gp_Q) + Op(’y_lp_l/2). Recall ¢(i,j),1 = Zoi,j and ¢(i7j)70 = —ZOZ'J'. By
(§.B.2), we have

1 1 1 o o s

Trn=—+ E <—+—>Zi£ZZjZij

’ N 2 2 by,
ijrisg igae N H6L S

2 [E ; E , . e
(S.B.6) 4 Z {(2)0(6,]),1} B {(2)0(6,]),0}:| ZisZi;
i il b e, He,2
le
1 [E{pq E ; E{oq; E . .
o Z {e 74),;} {ewit N {e ,z),;} {QO(Z’])7O}:|Z7;,]'-
i il b He,1 He,2
Joo
Due to Z” = ij and E{¢(; jy -} = E{p(j,i) -}, we have
| E{oq 01 E{ o001 E{ o 00 {0 ot -
oo e Z [ 10601 E{e@ )1} N {ei.00} {90(4,]),0}} 2.
[Hel 24001 2102

U ner.
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Under Condition 1,

min  min

|:E{90(z€ 1 HE{ @@ )1} E{SO(M ot E{ew@ ), o}}
Celp) i.j: 45, 1,54

2001 20002
e max max [ {eana} {90(47g),1}+ {®a.0.0} {90(473)70}]
Celp] i.5:i#], 1,574 2101 2102

Notice that {Zom}(i’j)em is an independent sequence with [H,| = (p — 1)(p — 2)/2. By
Bernstein inequality, we have

(S.B.7) [ Jea2l =Op(v'p71).
For Jy 1, we can reformulate it as follows:

Jz1——z zz[

1

E . .
Z {ewnat Zm]

iciAt 2 e b
Jea (1)
1 2 1 E{ow )0}
(S.B.8) —— 2 it [j 3 %Z@j] :
P= i L
Jo1(2)
Let Aig = (p—2)7" ). 5. By .1 gt Zi g Due to
o Elewpat o E{ow )1}
mim mim — X7 Mmaxmax —————
Le[pljig#L e Lelp] j:gF#L e
under Condition 1, by Bernstein inequality,
(S.B.9) P(‘Ai’g‘ > u) < exp(—Cylpu?)
for any u = o(1). Given a sufficiently large constant C,. > 0, define
- C.log'?p
E(Cy) = {%1}§|Az,€| < W .
By (S.B.9), we have
1 o~ ~
(S.B.10) P{|Jr1(1)] > u} < P{‘E > ZivAig| > u,gg(c*)} +pC.

1:17#L
The constant C' > 0 in (S.B.10) can be sufficiently large if we select a sufficiently large
constant C,.. Write F_y = {Z; j : i, j # {}. Conditional on F_,, by Bernstein inequality,

P Zz Az >u, En(C,
{ p_ Z £430,0 5( ) Z}
1:1£L
22 1 1/2
gexp<_ _ _ Cp*u _ )[(maX]AM‘_%>
CZi:i;éz Aij + pumax;. ¢ |A; g iritl ~2pl/

for any u > 0. Selecting u = C,,y~2p~!log p, we have

{ _1ZZZZAZZ

§
i 9F£L

5 ~ C logl/Qp %
—C ) * —-C
Sp J(glgg;\flz,z\ < PET <p ",
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which implies

C** logp

Al e

1 17#L

sg<c>}sp-%o.

Here the constant C' > 0 can be sufficiently large if we select a sufficiently large constant
Ci. Thus, (S.B.10) implies maxyc(,|Je,1(1)| = Op(y~?p~*logp). Analogously, we also
have maxep |Jr,1(2)] = Op(y~2p~ ' logp). By (S.B.8),

(S.B.11) max |Jy 1 | :Op(7_2p_llogp).
Le[p]

Together with (S.B.7), by (S.B.5) and (S.B.6), we have

) 1 1 T \. . o
0p— 0= N Z (2— + 2—> ZinZejZij+ Reg
igidgigpe N1 “HE2

with Ry g = O, (Y %p72) + O, (v~ 'p~1/2), which implies

2peape2 4 1 o oS
(S.B.12) —%(95 —0y) = N E ZMZ@JZM +R9
Het T e 01, 1, AL

A,

with Reg = Op(77%p7%) + O0p(2p~ /).
In the sequel, we will specify the limiting distribution of v/N (Ag,, ..., A, ) for given s
different ¢4, ..., 45 € [p]. For given k € [s], we have

1 1 L.
Ay, = N § Zit 2ty i 2+ N E : Zi 0y Loy, jZi 5
1,71 17, 1,51 1# G, 1L,3F
(SB13) ALY s ls {x,j}m{zl,...,zk,l,zkﬁ ..... Ls}#D
My, 1 My, 2

Notice that

Mzk,zz% Z Z Zoi,ZkZQZk,Zk/ZOi,Zk/

Kk k il
1 o o o
+ > 20 0 Lt Lty O30 -
k',k”:k';ﬁk”,k/,k”#k
Since MaXpe(s) MAXp/ krr: k' £k, k' k"' #k |ng,7g,C ng Ly wa,fw| 5 1, it holds that
, 1 .
My, 2=2 Z 2oy b, N Z ZioZig, | + Re 10
k' k' £k il

with Ry, 10 = O(p~2). For given k’ such that k¥’ # k, since {Zlgk Zowk, Yite, .0, is an inde-
pendent sequence, by Bernstein inequality, we have

1 oo
P (TS > ZinZig,
p G el
for any u = o(1). Therefore, it holds that

1 o .
N Z Zi 0, Zig,
(TS ST

> u) < exp(—Cpu?)

=0 —-3/2
o b)),
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which implies My, o = O, (p~>/?). By (S.B.13),

(S.B.14) Ay, =My, 1+ Ry, 11
with Ry, 11 = O, (p~3/?). Given 1, ..., £, write
1
(S.B.15) bowe = D, Var(Zig)Var(Zy, j)Var(Zi),

i,ji#£],
G GFELY s Ls

flte,... ts) = {exp <L\/_Ztkb€k **Mgk71>} with 2= —1.

Let ]:Z,---ls = Uzzl{Zi,fk’kaJ : Z,j 75 fk} Then

(S.B.16) E{exp(L\/_ZtkbglﬁMghl)‘fz’m’zs}

1/2
2t1b
(S.B.17) =E[exp{ > <Z b zszek,g>Z } T, 4
i,j;jl-lifjj,es
b, P L
(S.B.18) = ]I [eXp{ (Z e szZék,j>Zi,j}']:Z,,,.,ZS]'

G FELY s Ls

Write A; ;= (31—, 275;613_1/2 1/2201'7@ Zogw)Zoi,j. By Taylor expansion,
_ _ 1- -
exp(Ldij) =1+ 1Ai; — §A?,j + R

with |R; ;| < CN=3/2(|t;] 4 --- + |ts])?, which implies
1/2

2t kbfk *% ° 2 ~

E{exp(uAi))| Ff 4} =1— 1 (Z

with ]ﬁj’j\ < ON732(|ty| 4 -+ |ts])? forany i, j # €1, . .., £y Due to the fact | [}, 2 —
[Ty wi] <35ty |2k — wy| for any 2, wy, € C with |z;| <1 and |wy| < 1, we have

{ exp <L\/_Ztkbg **Mgk71> ‘ ‘7:;1,---,&}

1/2 2
2tb, . P (|t1] + -+ |ts])?
- T {3 (M Az vt} < P
sl N
Liger s
It also holds that
—1/2

Ztkbf ok S 2
— ngngJ) Var(Zm)}

1/2 2 4
. t ce |t
Mksz,y> Var(Zm)}‘ N (Ita] + N—H )

Py
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By Triangle inequality,

{3 ¥ (z

INTERSR
LAl

- E{ exp L\/_Ztkbg 1§M£k,1> ']:Z,...,es}‘

B (R ) (T et )

-1 /2
2tyb, !

2
ngng j> Var(Zi,j)}

S.B.19
Define
s 1/2 2
0= 3 (z Mkzz,d> Var(Z Ztk
i.jii], =1

VES S R Ls

By (S.B.19), we have

Fltr,.. o ts) = E[ {exp(m/_ztkbg **Mek,1>‘f2,...,esﬂ

(S.B.20) = exp < — Zti) E{exp(—Q)} 4 R(t1,...,ts)
k=1

with |[R(t1,...,ts)| SNTY2(Jty| + -+ |ts])® + N71(|t1]| + - - + |ts])*. Note that

S

212 . . /
Q= ZN;** > {Zﬁék—E(Zz’%ék)}{ > E(Z‘ivj)var(zi’j)}

il s 1 iFi el
S 2
t .
D szk > 22 INZE ; — B(Z;, )WVar(Ziy)
k=1 o ®E i,

G GFELY s Ls

tktk/
* Z W Z ZZ o ka/ ng ]sz/ ]V&I‘(Z )

kvk/:k#kl Nbgk k% Zk/7** X ‘17 i#3,
G FELY s Ls

Recall
. 52 — 2
itigbils Z E(sz’j)var(zi’j)ApAi:iﬁi?(.,es. . Z B2y, ) Var(Zi)-
JiiFul, L JigFile,.. s

By Bernstein inequality,

1 . o .
PHN > {2 - E(Ziz,ek)}{ > E(Zfi,j)va‘r(zl}j)}
7:27:7561,...,[5 ij?éZ',gl,...,gs

for any u — 0. By the decoupling inequality of de la Pefia and Montgomery-Smith (1995)
and Theorem 3.3 of Giné, Latata and Zinn (2000), for any u — 0 but pu — oo,

1 .
Plly S (B -BEMA, -BE )N (zy)
i,j: 1A,
N ES S R Ls

1 B 5 B B
P{‘N > ZioZig, Zu, 20, jVer(Z; )
i,5: 1#7,
i,j;fl,-»J-,fs

> u] < exp(—Cpu?)

> u| Sesp-cu).

> u} < exp(—Chpu)
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with k # k', which implies
(S.B.21) P{|Q| > ([t1] + -+ |ts])?u} < exp(—Cpu?)

for any u — 0 but pu — oo. For a sufficiently large constant C', > 0, define
C, logl/zp
= {|Q| S— 5 (-
p
For given (t1,...,ts), we have P(£°) — 0 as p — oco. By (S.B.20),
Fltr vt = - Ztk) E{exp(~Q)I(E)} + E{exp(~Q)I(E))]

+ R(t1,...,ts).

Notice that Q + > 7 _, t% > 0. For given (1,...,ts), as p— 0o, due to the facts

R(t1,... ts) =0, 0§E{exp< Ztk> }<IP>(SC)

Cilo 1/2p Cilo 1/2p
14 exp < - %)P(é’) < E{exp(—Q)I(£)} < exp <ng2>1@(5) 1,

we have f(t1,...,ts) — exp(— > p_; t2), which implies

Y20, )T 5 N(0,21,).

0 %%

VN (b, 2 My, ... b,

01 %%

For ng specified in (3.13), since ﬁugk,lugk,gb;k ﬁ(,ug,ﬁl + ugk,g)_ll~3Z2 — 1, then

_ M, M T
VNdiag(b, 1/2 b 1/2){(Ml’1+%’2) bl (be1 =+ e, 2) 53,1}

o V2ug ape e V210
4 N(0,2L,).
Together with (S.B.12) and (S.B.14), we complete the proof of Theorem 1(b). O

B.3. Case 3: y=<p~ /% For T, defined as (S.B.2), as shown in Section B.2,

1 1 1 logp
Té,lz_ﬁ Z <—+—>ZMZ£,]Z,]+O< 1/2>

2 2
iy igAe N CHeT LHe2
when = p~ /4, By (S.B.1) and (S.B.3), we have
1 1 o e o
0p— 0= —— Z 00250 — N Z <% + %)ZMZZJZM + Ry 12
il i jrigi,j 7 ’

with Ry 12 = Op (p~Y/?log p), where Ai ¢ is defined as (3.11). Define

5, = 2 0hte,1 /00,2
= ———=
te1 + fe2
Then
 2pephe2 @

fe 1+ e 2 ¢ Z it M N Z 1,640,544,5 2,13

i i,jeig, 1,57
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with Ry 13 = O, (p~*/*logp). Given s different /1, ..., s, as shown in Section B.2,
1 1
N Z ZZZI@ZZMJZZ.Y _M&ml_‘_o 3/2
Z?]Z;éjvzvj;éék
where Mp, 1 is specified in (S.B.13). We also have

T Z AZZ;C iy — %1 Z )\zék 1,0 +O< ;/2>

11 1£ Ll D 2N

Then

2#& 10,2 /4 lng

—— 2 (G — Oy ) =My 1+ M 4+ 0, —= ).

,Uék,l“‘:u&cﬂ( ) , lr,1 P p5/4

For any k € [s], write
2
He, 11e,, .2
(S.B.22) T 2<7> D=2y
" ey, 1 T+ fhey 2 ( )b,

where by, is defined in (3.12). Write ng = by, sx + by, wsx With by, .. specified in (S.B.15).
Let

f(tl,...,t) [exp{L\/_Ztkb M£k1+Mgk )H with 2= —1.

Recall 7j , = Ui _{Zis., Zo, j 4,7 # Ui }. Same as (S.B.19),
. 2
eXp{ 3 > <Z zsz&c,g) Val‘(Zzyj)}—

— E{ exp <L\/Nztki)g_kl/2MZk,l> ‘fZ,...,zs}'
=1

G GFl] s ls
B (Y e ) (Y S e L

thbgkl/2

N N N )
which implies
po1l/2 2
fte,... ts) :E[exp{ - Z <Z i —h OlngogM) Var(Zm-)}
ol 0
(S.B.23) X exp QWZ@B;S”M;M)] +O(NY2)
k=1

for any given (t1,...,ts). Define

. oty L \? °. £2by
= N e Ziw Dy ) Var(Zig) = e
¢ < N ’J> (ia) b,

k=1
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Same as (S.B.21), we have
P{IQ| > ([tr] + -+ + [ts)*u?} S exp(~Cpu?)

for any u — 0 but pu — co. For a sufficiently large constant C,, > 0, define £ = {|Q| <
C.p~'/21og'/? p}. Then P(£¢) — 0 as p — oc. By (S.B.23),

Ft,... ts) = E{ exp (L\/Ni:tkl};/zMng) exp(_Q)I(é)}

k=1
5 42
tkb&c **)
X ex — ——— ] 4+0(1).
3 S ) ot
Note that
" * AT . 2410, 1100, 2 2400, 1100, 2 1
(Méhl"“?Més,l) :——-dlag< yeeey . Z W;
v ey 1 ey 2 e 1+ e, 2/ p—1
109F e ls
for w; specified in (S.B.4). As shown in Section B.1,
(p— 1)_1/2diag(b;1i(2, . .,bg_jf) Z w; i>/\/(O,Is).
i:i#élv'“?es
For by, .. defined as (S.B.22), due to by, . = v?by, , then
/2 —1/2
VNdia ( b f) M. M )T S AN(0,LL).
g V2 V2 ( 4,1 53,1) (0,15)

Notice that ng = by, sx + by, sxx. By the Dominated Convergence Theorem, f (t1,...,ts) —
exp(—>_;_, t3) for any given (¢1,...,t,), which implies

. V200, 1110, 2 V240, 110, 2 A 5 T
\/Ndla‘g{ : 7V1/27"'7 = S7v1/2}(6£1_9517"'7655_955)
(1o, 1 + pe, 2)by! (fre. 1+ pe, 2)b,’

4 N(0,1,).
Due to by, < /B, by, < p*/? and

(o1 + 110,,2)%00, (o, 1+ 100,2)% 00 sx | (p0,1 + 110, 2) bty o

2 2 2 2 2 2
2017, 117, o 2015, 1M, 2 2017, 117, o

(Mfk,l + Mgk,2)2

Var(Z; ¢, )Var(Zy, ;)Var(Z; ;)
ZNIU%;C,IM%;W? Z . “ "

@4t i#£],

= (p - 2)b€k +

then

\/5 k k 7 — -
( /f " )751/2 = {(p - 2)b€k + bék} 1/2 + O(p 7/4) :
lu’&wl Mék,2 ék

Hence, we complete the proof of Theorem 1(c). O
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C. Proof of Proposition 6. To construct Proposition 6, we need the following lemmas
whose proofs are given in Sections G.2 and G.3, respectively.

LEMMA 2. Let Condition 1 hold and (., ) € M(~y; Cy) for some fixed constant Cy €
(0,0.5). If v >> p~Y310g'/% p, it holds that

10g1/2
mi;éX|/\zz— Aie| = p(ﬁ)

71

for any given { € [p], where /A\i,g is defined in (A.4).

LEMMA 3. Let Condition 1 hold and («, ) € M(~y; Cy) for some fixed constant Cy €
(0,0.5). If y > p~ /3 log!/ p, it holds that

1 1/2 1 1/2
max\Var(Z ¢)— Var(Z; )| = 37+ o — 5){013 (%) + OP< Ogl/z ) }

RED

for any given { € [p|, where Var( i.0) is defined in (A.5).

Recall that

bngj—EjAZWuZﬂ)MMbg E——E:AZWHZU)

7 ’l;ﬁf 7 z;ﬁZ
Then
by — by = ———-}j A2, \hMZM)+————§:AM{Wﬂ(20 Var(Zi()}
P
7 Z;ﬁf 1 z;ﬁf
1 R —
+ p—1 Z;@(Aie - A?,e){var(zu) — Var(Z;)}.

Note that \; y < 7_1 and Var(Z; ) < 1. By Lemmas 2 and 3,

IQ-—WMSgﬁﬁﬁir—kﬂl+172gp§ﬁgﬂ2u)—VﬁdZmﬂ
1 1 1/2
-a(55) o)
vop yipl/
Since by =< v~2, we have

bg logp logl/2
C1l=0,(8P) 4o (8P

be ‘ I)< Vip ) TP\ e

2 log!/?p log?p
’bz—bﬂzop<w +0p i )

Recall that by = v~ 6. It holds that
logl/ 2
< ypt/? >'

Bg < 10g1/2 )
L _oal=0,(2-L)+o0
by ‘ P 'YBP P

We complete the proof of Proposition 6. a

Analogously, we have




SUPPLEMENT TO “EDGE DIFFERENTIALLY PRIVATE ESTIMATION” S13

D. Proof of Theorem 2. The proof of Theorem 2(a) is almost identical to that of The-
orem I given in Section B with replacing (ji¢1, fiz,2, fte,1, ft¢,2) there by the bootstrap ana-

logues (,&} 1 ﬂz 95 ,uz 15 ,uz ,) and is thus omitted here. We only prove Theorem 2(b). Due to
1/2 =(p— 2)b}; + 5} and vy = (p — 2)by + by, then 1/2 —v=(p— 2)(b}; —by) + 5} — by. Note
that A} , = (1 —26) "' Ny, ptf y = (1= 20)% g and puf , = (1 —20) 11y 2. Then

bY — by = —Z%;Z M{V&r ))—Var(Z,-/)}7

U (peg+peg\’ Z Var(ZiT,g) Var(Zg,j) Var(sz)
2N He,1 00,2 (1—26)2 (1 —26)2 (1—26)2

by — by =
i\jri i, j 7

- Var(ZM)Var(ZM)Var(Zm-)} .

Recall § € (0, ¢] with ¢ < 0.5. For any i # ¢, we have

Var(Zlg)
(1-20)2

Under Condition 1, we have

-0

_ Var(Zi,g) (1 — 25)2

minmin )\; ; <~ ! < maxmax ), , and min = ~° <X max
telp] i il i ~" telp] itidtt 1,0 telp) e, /7 telp) He2 -

Then (p — 2) maxe \b; — bg| Sy~ ?pd and maxc, @ — by| <~758, which implies

p(5 (5
maxll/z vl S5+
te[p] 28

—6

Note that minge,) vp < py 2470 maxye[p) V¢- Then

”_5_1'20(5).
7

max
L€[p)

We complete the proof of Theorem 2(b). a

E. Proof of Theorem 3. Recall N = (p — 1)(p — 2). As shown in (S.B.1), it holds that
AR IR n Iap(1)  Ir2p(1)
2pe1 2pe2 21N 2p0oN

~~ ~~

Tg,l th,z

(S.E.1) Oy — 0, =

+RZ,4 )

where maxc ) [Rea| = Op(v~%p~2logp) + Oy (v~ 2p~ogp). By (S.B.6),

1 g1+ fe2 B
Ty1= N Z <27 Z; ZZZ,] i —Je1— Ji2.
igritg gt N CHETHE

Following the arguments for deriving (S.B.7), we have maxc ) | Jy,2| = Op(y~1p™t log!/? p).
Together with (S.B.11), we have maxc, |Jr1 + Ji 2| = Op (v 2p~1logp). Recall Tpo =
(p—1)~t Zi:i# )\MZOM with \; ¢ specified in (3.11). By (S.E.1), we have

~ 1 ,Ulé,l —’—//L&z 3 o o 1 o

Op—O=—— R 2o ZeiZig+ —— Y NieZig+ Rena,
N = 20,1 p00,2 p—1%

1,51 177, 1,574 B ivitl
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where maxcp,) |Re1a| = Op(v p~2logp) + Op(y2p~tlogp). Recall vy = (p — 2)by +
by < py~2+~75. Then

;@ S [CORTTEN PR O
vV Nv 1/2 0p—0p)) =— — v 1/2{(; ZioZo i Zs i — NoZis
[ ( ) \/Nz’j:i;ﬁjij#e ¢ 2411102 1,640,544,5 i i,

+ Ry 15,

where maxe ) | Re,15| = Op (v~ 'p~/%log p) + Oy (v~3p~' log p). Notice that

1/2
VR(f)™ (8= 00) =N, (6~ 00) + VN, { (-?) - 1}@ ~ 6
Ve

= mv;l/z(ég — 94) + Rg716 .

By Theorem 2(b), maxe, |(ve/ v})1/2 — 1| = O(8). Together with Proposition 3, we have
max ey [ Re,16] = Op (6 log'/? p). Given (i, j) such that i # j, we define

—1/2) [ Hertle2) s 5 s :
(SE2) Y(i,j),Z = —Ijg / { <W> Zi,ZZZ,jZi,j - )\L[Z@Z}
forany £ #14,j, and Y, ;) o= 0 for £ =i or j. Write Ry 17 = Ry 15 + Ry 16. Hence,
_ A 1
VN0, 0,) = i Z Yiijye + Rear =:he+ Rz,
iji i)

where maxse(y) [Rea7| = Op(y~'p~"/?logp) + O, (y~?p~ logp) + Oy (810g! 2 p).
Write Vi = diag(v],..., 1)), h=(h1,...,h,)" and ¥ = (Ry 17, ..., Ry17)". Then

(S.E.3) VN(VH™V2(0-0)=h+F.

Lemma 4 states the property of B = Cov(h), whose proof is given in Section G.4.

LEMMA 4. Write B = (Bél,ég)pxp' Then maxi<g,£6,<p |Bgl752|
any ¢ € [p).

Define

<p~land Byy=1 for

~

0= sup |P(h <u) - P(§ <u)
ucRkep

with &€ ~ N (0,1,,). By (S.E.3), we have
P{VN(VH)™2(0 - 0) <u} =P(h+7F < u, |Floo <€) + P(h+ T <, |Floo > €)
for any € > 0, which implies
P{VN(VH) ™26 - 6) <u} <P(h <u+e) + P([foc > €),
P{VN(VH)™2(0 - 0)<u} >P(h<u—c¢,|[f|oo <€) >P(h<u—e) — P(|f]oc > ).
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Therefore,

P{VN(V))"*(0-6) <u} —P(¢{ <u)

(S.E.4) <Ph<u+e)-P¢<u+e)+PE<u+e)—PE<u)+P(f|c >¢)
<o+ PE<u+e)—PE<u)+P(fle >€),

P{VN(V)"/2(6 — 6) <u} —P(£ <u)
>Ph<u—¢)-P<u-¢)+PEl<u—¢) P <u)—P(f|c > )
>0+ P <u—e)—P(E <u) - P(f[ec >¢),

which implies that

sup [P{V'N(VT)""/%(6 — 6) <u} —P(¢ <u)

ucRr

(S.E.5) <o+ sup [P <u+e)—P(€<u)|+P(|fe > €)
uckp
<04 Celog? p+P(|F|se > €).

The last step in above inequality is due to Nazarov’s inequality (Chernozhukov, Chetverikov and Kato,
2017, Lemma A.1). As we will show in Section E.1, o — 0 as p — oo. Recall |I| =

Op(p~ 2y ogp) +Op(p~ 1y 3 logp) + O, (1og'/? p). Since v > p~/3log!/? pand § <
(log p) =1, we know p~ /2y~ og/2 p+ p~1y3log®? p+dlog p — 0 as p — oo. Therefore,

there exists € > 0 satisfying p~1/2y " logp + p~ 1y 3 log p + dlog'/? p < e < (logp) /2.

For such selected e, we have C'elog!/? p + P(|F|o > €) — 0 as p — co. Then we complete

the proof of Theorem 3 by (S.E.5). O

E.1. To show o — 0 as p — co. Let g ~ N (0,B) with B specified in Lemma 4, and
define

o= sup |P(h <u) —P(g <u)|.
ucRr

Then

0<o0+ sup IP(¢ <u) —P(g<u)|.
uckr

Recall ¢ ~ N(0,1,) and g ~ N (0, B) with |I,— B < p~!. By Lemma 1 of Chang, Chen and Wu
(2024), we have

sup [P(¢ <u)—Pg<u)| ST, - B|10g?3p < p~ 3 10g? 3 p = 0.
uckr

To show ¢ — 0 as p — o0, it suffices to show g0 — 0 as p — oo. Define

0»= sup [P(yuh+V1-vg<u)-P(g<u)
ucRr vel0,1]

with g ~ A/(0,B). It is obvious that g < .. In the sequel, we will show g, — 0 as p — co.
Let 8 := ¢logp. Fora given u = (u,...,u,)" € RP, we define

(S.E.6) Fa(y) =B "log [Z exp{S(ye — W)}}

(=1
forany y = (y1,...,yp)" € RP. Such defined function Fj(y) satisfies the property

lo 1
0 < Fa(y) — max(ye — up) < —=F =

Lep] B o)
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for any y € RP. Select a thrice continuously differentiable function fy : R — [0, 1] whose
derivatives up to the third order are all bounded such that fy(¢) =1 for ¢ <0 and fy(t) =0
for ¢t > 1. Define f(t) := fo(¢t) for any t € R, and ¢(y) := f{Fjs(y)} for any y € RP. To
simplify the notation, we write g¢(y) = 9q(y)/9ye, qu(y) = 9°q(y)/9yeOyy, and qeri(y) =
23q(y)/0yeOy0y;. Let g be an independent copy of g. Define

T = g(v/oh + V1~ vg) - q(8).

Lemma 5 gives an upper bound for sup,¢jo 1] |E(7)|, whose proof is given in Section G.5.
LEMMA 5. If ¢ < p/?(logp) =3/, then supyefo1) IE(T)I S p12¢310g"/? p.

Write § = /vh + /1 — vg. Notice that
P(§ <u—g¢ ') <P{F(8) <0} <E{q(8)} <P{Fs(g) <¢ '} +E(T)
<P@E<u+¢")+|E(T)
<P@E<u—¢ ")+ 0o og"p+[E(T)|

andP(d <u—¢ 1) >P(g<u—¢ ) —Coplog'?p—|E(T)|. Together with Lemma 5,
we have

oo= sup [P(6<u)-P(g<u)
ueRr,ve(0,1]

<Co Hog?p+ . IE(T)| < ¢ tog 2 p+p 262 10g™?p.
ve|0,

Selecting ¢ = p*/8log=%/*p, we have o, < p~+/8log®*p as p — co. Hence, it holds that
o— 0asp— o0. O

F. Proof of Proposition 5. Recall s = |S| and x, = exp(—|{T| V maxpes |9Z|) De-
fine Aj 0 =23, iz o/ B{ow 1)1 E{p( j)0} To prove Proposition 5, we need the following
lemmas whose proofs are given in Sections G.9 and G.10, respectively.

LEMMA 6. Let (o, 8) € M(~,Cq) for some fixed constant Cy € (0,0.5). It holds that

: 2wo—2w1 53 : —2wy . 3.3
min > 2T min > !
res el P Xp7 lese He1 P Xp7 s

min i 2 2 PN, min i 2 PG
LEMMA 7. Let (o, 8) € M(~,Cq) for some fixed constant Cy € (0,0.5). It holds that
max [jie — 1| = Op [y?p 2 {sp™nBmon Oyl 4 ity 2 log!/2 5]

+ Op(’yp_1 log s) + Oy, (p~! log!/? s),
max [jie,1 — 1| = Op [y 2p ™2 {sp™ (T en Ty T 4 pIm 1y log /2 )

+O0p (VPP (sp ™ X L P T ), Hlog 2 p

+Op(vplogp) + Oy (p~ ' log'/? p),

max |iie = jie = Op [y2s1/2p=2 {spmin(Zes—wi i =2we)y Sl plfwa=wiyy "2 16g1/2 ]
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[’72}7 3/2{spm1n( Wa, Wa— wl)X;4 +p1—w1 }X;l log1/2 S]
Op [ysp 2 {p™* ™ x;, * I(w1 > 2w2) + I (w1 < 2w3)}log s]
[’78 ?’/z{pw2 “1y 2I(w1 > ws) + I (wy :wg)}logs]
hp Xp (wyp > 0) 4 I(wy =0)}log s]
Opl”! logW 9.
max |fig,z — pie,2| = [7231/2 T2 gpmin@uamen 00y T ey T2 0gl/2 )

+ O {2 p 2 (sp2 ™, )X, Hlog! 2 p)

+0 [’ysp_z{p2“’2 —w1X;3[(wl > 2ws) + I(wy < 2ws)} log p]
[ _3/2{p‘“2_“’lxg2l(w1 > ws) + I (wy :wg)}logp]
Op[vp™ ™ x;, "T(w1 > 0) + I (w1 = 0)} log p]
Oplp~ 108 2p).

Now we begin to prove Proposition 5. Recall Q = fig1/fte,2 and (g = f1g,1/11e,2. Then

fleq — Hea w(A

(o= CGo= 5 (o2 — pe2)
He,2 Mo

 (fren — pen) (e — pu2) i pen (floo — pe2)?
e,2fbe.2 ﬂ&ﬂliz

which implies

1. maxyes |fie,1 — fe,1] | naxees \fe,2 — tie 2]
max |—((p — (¢ §< - ’ ’ -0,(1) =0,(1
tes Cz( ) minges fig,1 minges fig,2 p(D) =(1)
provided that

S.F1 max |flp1 — =0 (min ) and max|jig o — =0 (min )
SED  max|fe: — pe1] = op( min pe, nax |fig2 — 2| = 0p | Min pg,2

Since 6, = log(¢s)/2 and 8, = log(Cs) /2, under (S.E.1), it follows from the Taylor expansion
that

0, — 0,/ <O
max |6 — 0| < Op(1) - max 7 (Ce Ce)
ma — ma (p o —
(S.F2) < < Xees e = preal Xees |fe2 Me,2’> L0,(1).
mMinyges pe,1 mMinges He,2
Analogously, we also have
maxyese |fle,1 — e, | maXgese

(SF3)  max|f, — 6, < < e _‘“’2') - Op(1)

mingese fe,1 mingegse fe,2

provided that

S.F4 max |fig1 — =0 (min ) and max|jig o — =0 (min )
(S-F4)  max|iig1 — pe| = op( min e, Max |fig,z — pe,2| = 0p ( 0in 1,2



S18

As shown in Section F.1, we need to require (wy,ws) to satisfy 0 < w; — we < 1/2 and
0 <wy <wj < 1, and the restrictions in (S.F.1) can be simplified as

Sp—3/2+min(2w1 —2w2,w1)X;;8 10g1/2 s

(S.E5) v > p—1/3+max(2w1—2w2,w1)/3X;5/3 logl/ﬁ s

)

81/2p—1+w2X;710g1/2 s

As shown in Section F.2, we need to require (wy,ws) to satisfy 0 < wy <wj < 1/2, and the
restrictions in (S.F.4) can be simplified as

83/2p—2+min(2w1 —UJ27U.11+OJ2)X£8 10g1/2 P,

(S.F.6) > gp T3 Pt X;5 log'/?p,

p_1/3+2w1/3X§1 log'/$ .

Due to s < p and x, ' = exp{o(logp)}, if 0 <wy <wi <1/2, we have

—3/24+min(2w; —2wa, w1) 1/3+2w, /3

sp Xy Slog! /2 s <p~ X, log'/%p,

1/2, —14ws

D xfloglﬂ § < p /3t /3

S lellogl/Gp.

Therefore, combining (S.E.5) and (S.F.6), if 0 < wy; < w; < 1/2, (S.E.1) and (S.F.4) hold
provided that

fp—l/3+max(2w1—2w2,w1)/3X;5/3 log!/6 s

(SET) 7> Sp_3/2+m+.W2 e,
83/2p—2+m1n(2w1—w2,w1+w2)X1;8 log/2p |
p_1/3+2w1/3X£1 log!/6 .

Under (S.E.7) with 0 < wy <w; < 1/2, by (S.F.2) and Lemmas 6 and 7, it holds that

I}?g‘ég _ 96‘ _ Op (’Y_lp_l/2+wl_w2X;7 10g1/2 ) +0 ( —14-2w; —2ws 510g s)

L0 {,Y—lsp—3/2+min(2w1—2w2,w1)X;8 log"/? s}
+ Op [y~ 3p~ L max(2—2ws,0n) ;510g1/2 s)
L0, (7_181/2p_1+w2)<;710g1/2 s) + 0, (,Y—lp—l/2X;6 log/? )
n Op{7—183/2p—2+min(2w2,2w1—2w2)X;810g1/2 s)
n Op{,Y—lsp—s/2+min(w1—wz,wQ)X;m log'/? 5
+ Op [y 2sp~ 2T {p*e2 —w1X;3[(wl > 2wy) + I(wy < 2002)})(;5 log s]
+Op [y “2g1/2p 3/ 2w frwa ey _2I(w1 > wo) + I(wy = wg)}X;5 log s]
+Op [y Pp M p T (w1 > 0) 4+ T(wy =0)}x;, ° log 5] ,
max|f; — 6, = O, (7—181/2p—1+wlxg4 log'/2p) + Op (7~ Sp—3/2+w1+w2 ~5 log!/2 p)

LeSe
+ Op{,y—ls3/2p—2+min(2w1 —OJQ,OJ1+OJ2)X£8 10g1/2p}
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+0p (v 1p 72 M og 2 p) + Op (7202 P logp)
+ Op (’7_181/2p_1+w2X;5 10g1/2 p) + Op (7_3p_1+2w1X]73 10g1/2 p)
+ Op{,Y—183/2p—2+min(2w2,wl)X;6 10g1/2p} )

Due to X, € (0,1] and s < p, under (S.F.7) with 0 <wy <w; < 1/2, we have

7_2p_1+2“1_2w2><;510gs _|_,7—1p—1/2X;6 10g1/2 s

—1/24wi—ws

<y7'p Xy log'/?s,

-1 83/2p—2+min(2w2 ,2w1—2ws)

5 ,7—1Sp—3/2+min(2w1—2w2,w1)X£8 10g1/2 s,

T 2spT 2t {pz‘*’r“lxg?’l(u)l > 2w9) + I(wy < 2w2)}X;5 log s
< 7_181/2p_1+w2X§710g1/2 s,

y 21 2pm 3/ 2w {pwrwlxg%(wl > ws) + I(w = wz)}X;5 log s
< 7_181/2p_1+w2X§710g1/2 s,

S {p_wlxglf(wl >0) + (w1 =0)}y;, " log s

S ,Y—lp—1/2+w1—w2X;7 10g1/2 s,

—1g1/2) =1+ — 142w,

X, Hlog!2p+~7%p X, *logp

—1/24w,

~y

<y7lp X, Hog'?p,

_183/2p—2+min(2w2,w1)X;6 10g1/2p

—1.3/2, —24+min(2w; —w2, w1 +w
S,Y S/p ( 1 2, W1 2)

5
X, S log' 2 p,
which implies
max 10 — 8 = O (y~Lp~V2+e1=wny ~T1ogl/2 §) | O (v~ LsW/2p1+92y =Tlogl/2 5)
0, {y L sp /A miInen 2 ) ~81001/2 )
n Op{,y—lsp—3/2+min(w1—w2,wg)Xil:lO log!/2 s)
0, [y 3p I max(e —2en ) ~51001/2 )

_‘[l;,ﬂe%}c( ‘ég — 6@‘ —= Op{7_133/2p_2+min(2wl_w27w1+wz)X;8 10g1/2p}

+0, (7_1p_1/2+w1><;4 10g1/2 p) +0, (7—1Sp—3/2+w1+w2 X;5 10g1/2 p)
+0, (7_181/2p_1+w2><;5 10g1/2 p) +0, (7_3p_1+2w1><;3 logl/2 p) ‘
Hence, it holds that

Igéf[j;]( ‘ég — 65’ = ONP (,.Y—lp—l/2+w1 10g1/2 p) + Op (,Y—lsp—3/2+w1+w2 10g1/2 p)

+ 0y (,Y—gp—1+2w1 log!/2 p)
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provided that

> Xp :

We complete the proof of Proposition 5. a

F.1. Sufficient conditions for (S.F.1). By Lemmas 6 and 7, to make (S.F.1) hold, it suf-
fices to require

P33 1001/

(72p_1/2+w2_w1><§210g1/2 s < p2w2_2wlx;§)ﬁ3,

—3/24min(2ws —w1,0) 1/2

Vsp X, log/? s < p?a 2\ 0a3

vp~'log s < p* RN DR,

p—l 10g1/2 S <<p2wz—2wlX;:)),.YZS7

_l+w2—wlxg2 10g1/2 5 << p—wl Xg,y?) ,

—24min(2ws —w1 , w1 —2w>)

V2512
7s*%p Xp log!?s < pmgn®,

—1/2—w;

v’p X, Hlog!? s < pT@ixEad

,Y2Sp—3/2+min(—wg,wg—wl)XI;S 10g1/2 5§ << p—wlxg,y?) 7

ysp 2 {pPeTen X;?’I(wl > 2w9) + I(w < 2wsy)}logs < p™“t ngyg ,
' Pp 32 {0y P T(wr > wa) 4 T(wy = wa) Hlog s < p~xiy?,

W {p X, (w1 > 0) 4+ I(wr = 0)}logs <p~“'x)7°,
1/2

p M log! s <pTix0y?,
which is equivalent to

(. —1/24wi—ws

p X, log'/?s,

sp—3/2+min(2w1 —2wa,w1)

_1/3+max(2w1—2w2,wl)/3X;5/3 10g1/6 s,

ng log!/2 s |
p

(S.E.8) v > sl/2p_1+“2xg7 log'/? s,

3/2, —24min(2w2, 2w —2w>)

s “p ngloglﬂs,

sp—3/2+min(w1—w2,w2)X1;10 10g1/2 s,

A3 e 2y T (wy > wa) + /2T (wy = wa) }log! % s.

(
Due to s < p, wy > wa, wy € [0,1) and lel = exp{o(logp)}, then
s3I 2y (wy > wo) + ¥/ T (wy = wo) } log!/? s
< 81/4p—3/4+w2/2X;7/2 log!/2 s
Sp—1/3+w2/3X;5/3 log'/% s Sp—1/3+max(2w1—2w2,w1)/3X;5/3 log'/% s

sp—3/2+min(w1—w2,w2)X;10 10g1/2 s



SUPPLEMENT TO “EDGE DIFFERENTIALLY PRIVATE ESTIMATION” S21

<

sp 3/ FFmin(e =2wsw1) S8 1001/2 5 if o) >
~ p—1/3+max(2w1—2w2,w1)/3X;5/3 log/% s, if wy = ws,

83/2p—2+min(2w2, 2w1—2w2)X;8 10g1/2 s

_ sp_3/2+wlxlj8 log'?s, ifw > 2ws,
~ Sp—3/2+2w1—2w2

X;810g1/23, if wy < 2ws,

—3/24+min(2w; —2wa, w1)

=sp X;810g1/2s.

Notice that v = O(1) and 0 < wy — wy < 1 with wy € [0,1). We need to require (wy,ws)
to satisfy 0 <w; — wy < 1/2 and 0 < wy < wy < 1. Under such restrictions, due to X;l =
exp{o(logp)}, we have

p—1/2+w1—w2X£7 logl/2 s Sp—1/3+max(2w1—2w2,wl)/3X;5/3 logl/ﬁ s.

Then (S.E.8) can be simplified as

—3/24min(2w; —2ws, w1 )

sp x;810g1/2 s,

y> p—1/3+max(2w1—2w2,w1)/3X;5/3 10g1/687

sl/2p_1+w2><;710g1/2 s,

which gives the sufficient conditions for (S.F.1). O

E.2. Sufficient conditions for (S.F.4). By Lemmas 6 and 7, to make (S.F.4) hold, it suf-
fices to require

2s1/2p= 1w X,?l log!/? p < p—zwlxg,ﬁ?, ,

7283/2p—2+min(—w2,w2—w1)X;5 10g1/2 p< p—2w1 Xg,yii ,

~2p /2w — 2w, X273 ,

—20.11

X, logt?p < p

e D 1 I e

M ogp < p AP,

ptlogt p < pm 23R,

_1+WZ_UJ1XI;2 10g1/2p <<p—w1X?),Y3’

—2+4min(2ws —w1, 0)

12512

7s*2p X; log! 2 p < g,

which is equivalent to

3/2, —2+min(2w, —ws,w; +ws)

s X, Slog'? p,

p

p—1/2+wlxg4 logl/zp,

(SF9) spt e P og! 2,
.F. v >

p—1/3+2w1/3X;1 10g1/6p7
1/2p—1+w2X£5 10g1/2p’

—2+min(2ws,w:)

S

$3/2

p X, tlog'? p.
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Due to s < p, wi > wy, wy € [0,1) and x,, ' = exp{o(logp)}, then

83/2p—2+min(2w2,w1)X£6 log1/2 p

< { 33/2p_2+w1+w2X;8 10g1/2p7 if w1 Z 2&)2 3

~ 83/2p—2+2w1—w2X;8 10g1/2p’ if Wy < 2ws,

_ 33/2p—2+min(2w1 —WQ,OJ1+OJ2)XI;8 10g1/2 .

Notice that v = O(1) and 0 < w; — wy < 1 with wg € [0,1). We need to require (wq,ws) to
satisfy 0 < wy <wi < 1/2. Under such restrictions, due to x, ! = exp{o(log p)}, we have

p /2 X;4 log!/2p < p—1/3+2w1/3X;1 log!/0 p,

31/2p—1+w2X;5 log"/2p < p—1/3+2w1/3X;1 log"/%p.

Then (S.E.9) can be simplified as

83/2p—2+min(2w1—wg,wl—i-wz)XgS logl/2p,
73> Qs T P log! 2,
P_l/3+2w1/3X§1 log!/6 .
which gives the sufficient conditions for (S.F.4). O

G. Proofs of Lemmas 1-7.
G.1. Proof of Lemma 1. For any i,j,¢ € [p], let zzl(z',j;ﬁ) =(4,75;0) — E{1(i,5;0)}

andﬂg(i,j;f) = a(i, 55 0) — B{tpa(i,5;€) }, where 11(4,55£) = ©3i.0)103,5),0P(,5),1 and
Va(i, 35 0) = ©(i,0),0%(i,5),1(£,5),0- Then

. 1 o . 1 o
oy — o= > i(i i) and fus —pra == Y ali,jih).
Ho| |, 4 Ho| |, 4
(,5)€He (1,5)€EH.e
Write Fy = {Z; ¢, Zj : (i,5) € H¢}. For any (4,7) € He, we have E{t(i,5;0)|F¢} =
.01 E{ ¢G50} and

1 o 1 o N
m(z wl(z,j;ﬁ)zm > Wi g ) — B (G, §:0) | Fe}]

ij)EHe (i.)€He
Ip1
1 . .
o > [B{n (i 5;0) [ Fo} — B{wn (i,5:0)}] -
|Hy| 4
(Z,])E’Hz
I;,:,2

As we will show in Sections G.1.1 and G.1.2, respectively, that

1 1/2
(S.G.1) max I 1 1| :0p< 2 p),
Le(p] p

21.,1/2

- log/ p vlogp
S.G.2 Inio| =0, -—=+—=) 40
(562 o ezl p( p'/? >+ p< p )
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we then have

~ lo 1/2 210 1/2 lo
-0 () 05552 0(32)

Lelp)

Similarly, we can also prove another result. O

G.1.1. Convergence rate of maxyey |l¢,1,1|. Conditional on Fy, {t1(4, j; €) } i j)en, 18
an independent sequence. For any (i, j) € Hy, write

U(2i,j),£,1 i= Var{t1 (4, j; £) | T} = (P%i,é),l(p?f,j),lvar(ZiJ) :
Due to (o, ) € M(7;C1), we have
|Var(Z; ;) — a1 — o)
<(1-a-B)(1 -20)E(X;) + (1 - a— )°E* (X ) <2

holds uniformly over (i, j) € H,. Notice that [p(; ;) 1| <1 — a and |¢(; ;)0 <1~ 3. Then
max; jyen, [¥1(i,7;€)| < C and max; jyen, U(zi,j),é,l <C.Dueto [H¢|=(p—1)(p—2)/2,
by Bernstein inequality, we have

P(|Ie1,1] > u|Fe) S exp(—=Cp*u?)
for any 0 < u < o(1), which implies that
(S.G.3) P(|Zp 11| >uw) =E{P(|1p11| >u|Fo)} S exp(—Cp?u?)
for any 0 < u < o(1). Therefore, we have (S.G.1). O

G.1.2. Convergence rate of maxcy [I¢,1,2]. Define o 5y - = (i j),» — E{¢(j),r}- Due
to ¥1(1,7;0) = 11(j,1;¢) for any ¢ # 7, it then holds that

P-Dp-2I12= > [eeo1ewnt —Elewoiewn i E{@u 0}
NIRRT
(S.G.4) =2 Z 6,01 B{0,)1 JE{ g, 5),0}
NIRRT
Lin(1)
+ Z 6,012 )1 E{ei )0} -
NIRRT,
Ie1a(2)

For I; 1 2(1), we have

Ip12(1) = Z D01 [2 Z E{(’D(&j)J}E{@(iJLO}} =: Z bl

1:1AL VRN EIRA 1 9£L
Recall
Y
Elp; : =vP(X;;=0)=
{(10(27j)70} Y ( 1, ) 1+eXp(9i+9j)7
vexp(6; +0;)

Bleya} =Py =) = o 0;)
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By Condition 1, we have

min E{cp ) 0} 7 =< max E{cp (i.7), }

ijt i irj: i
1) = 1)
jjmzlg {eapyiy == max {eiats

which implies

i A=’ < g e

Note that max e, max;. ;¢ Var{ @ )1 } = maxycp, max;. ;¢ Var(Z; o) < C. Given £ € [p],
since {¢(; ¢),1}i:i¢ 1S an independent sequence, by Bernstein inequality,

Cu?
(5.G.5) P{Ty12(1)] > u} S exp < - W)
for any 0 < u < o(p??). Thus,
(5.G.6) el I0,1,2(1)] = Oy (v2p** log? p).
€lp

For I 1 2(2), letting B(; jy =~ "E{¢(; j) 0} then

Y ei22)= ) GunabeqaBag)-
e i 6,5
Under Condition 1,
min  min By <1=<max max B .
telpigiidi,igrt D) telp) igiitd gt )
By the decoupling inequality of de la Pefia and Montgomery-Smith (1995) and Theorem 3.3
of Giné, Latata and Zinn (2000), we have
C
> u} < exp < - _u)
p

for any p < u < p?, which implies maxep [1,1,2(2)] = Op(yplogp). Together with
(S.G.6), we can obtain (5.G.2) by (S5.G.4). O

G.2. Proof of Lemma 2. As shown in Section G.1, fig1 — o1 = Ip11 + g2 for
Iy 11 and Iy o specified there. By (S.G.3), Iy 11 = Op(p~!). Let N = (p — 1)(p — 2). Re-
call 157172 = N_l{l&lz(l) + 147172(2)} with 157172(1) and 157172(2) defined in (S.G.4). By
(S.G.5) and (S.G.7), Ip12(1) = Op(v?p*/?) and I 1 2(2) = O, (yp). Hence, |fig1 — pe1| =
Op(p™") + 0, (v?*p~1/?). Analogously, we also have |figo — pp.2| = Op (p™1) +O0p (v2p~1/2).

For given (/,7) such that i # £, we know {©(s j) 19(i,j),0}j: j#0.i and {p(.5),00(i,5).1 } iz iz
are two independent and bounded sequences. By Bernstein inequality,

(§.G.7) max]P’{
Lep]

> unabeniBe.g)
i itg g

1
nqax — Z [(,0( £,5), 190( 4,7), E{(p £,9) 1}E{(ID(Z,] 0}]
it | p—2 =~
Jij#Lsi
logl/2 1
=0Op (T) =max| o= > [Peaoeina —Blees o Biven])-

jii

Notice that pp 1 < 73 =< jig,2. Based on the definition of \; , and /A\M given, respectively, in
(3.11) and (A.4), we complete the proof of Lemma 2. O
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G.3. Proof of Lemma 3. Due to

Yy +a—p) "’
Var(Z; ;) = (1 — _ ,
ar(Zig) =1 = B)B+ 1 +exp(0; +6,) {1+ exp(f; +00))2
— fa— 2
Vai(Zig) =(1- s+ 20 Fa=h) T
1 + exp(@i + 95) {1 + exp(@i + 9@)}2
it holds that
— 1
Var(Z; ) — Var(Z; 4)| < + o — - — —
Var(Zsg) — Var(Zig)| <+(y ﬁ)‘1+exp(9i+ ARy
1 1
+ 2+ N
T e+ 6,) 1+ exp(6; +6,)
1 1
<~3v+ a-— ~ — — .
"3 5)' 1+exp(f;+6,) 1+exp(¥+0,)

Define f(z) = (1 + €%)~! for x € R. Then sup, g | f'(z)| < 1. By Proposition 3, we have

1 1
1+exp(6; +6,) exp(0; +06p)

R 10g1/2p> <10g1/2p>
<2 Op—0¢] = Op| —5— Op| —5 |,
< 2ypylee =6 p( By ) T\ i

max

1 9£L

which implies

- B 10g1/2p 10g1/2p
max |Var(Z; o) — Var(Z; ¢)| = 3y + o — 5){01@ < Zp > +Op (W :

We complete the proof of Lemma 3. a

G.4. Proof of Lemma 4. Recall E{Y(; j ,} = 0 for any (i, , /) such that i # j and £ #
i,j. For any ¢1, s € [p], we have

1
Bue.= Yo EYijpaYige)
i7j: Z#]v i7j7££1732

(1)
Bh,fz

1
TN > BAY i 50,0 Va2 00}
i,J1,d2: 171,32, 31732,
0,51 7#L1, 1,02 # 02

~~

Bg))fz
1
TN > E{Y Gy 5.0 Yiag) e}
11,42, j#11,12, i1 #i2,
Jri1#Ly, Jrig# L
B’ST),Q
1
* N Z E{Y (i 5000 Y2 o) o} -

i1,41,42,02: 11 #71, 12772,
i1#4i2, J1#72, 11,01 741, 12,52 7#L2

~~

(4)
Bh,fz
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By (S.E.2), it holds that

1/2 1/2
Z/ /E{Y(Zlvﬂl Zly(lz,]z) 2}

- () (s Ve 2, s
B <Wz,1 + ey 2
20,1 140,,2

B <M£1,1 + ey 2
20, 1140, 2

+ iyt /\igng(Zoihél Zoiz,eg)

for any (i1, j1,/1, 12, jo,{2) such that iy # j1, ia # jo, i1, J1 7# £1 and ig, jo # (2. As we will
show in Sections G.4.1-G.4.4,

(S.G.8) )AihglE(ZC’ihngwQ ZtyinZiin i)

) )\izsz(Zizfz Zil,fl Zé1 WJ1 Zil,jl)

(S.G.9) v *n*BY, = <% —I—bgl>1(€1 =0y),

(S.G.10) v Pv 2B, = 0y Sp Ity # 62) + (p — 3)be, I(4 = bs),
(S.G.11) v P 2B, = 0(v S It # ),

8.G12) 1 yPBlY, ={0(p7Y) + O(v M (6 # ) + bif(ﬁl l).

By (S.G.9)~(S.G.12), we have v, *1}/* By, 4, = {bg, + (p—2)be, } (£ = €3) +{O(y Op~1) +
O(y™2)} (¢1 # £3). Recall vy = (p — 2)by + by < py~2 + v~ 6. Hence, By = 1 for any
¢ € [p], and maxi<p, £0,<p | Br, 0,| S p~t. We complete the proof of Lemma 4. O

G.4.1. Proof of (S.G.9). Forany (i,j,¢1,02) suchthati # j, {1 # {5 and i, j # {1, {2, by
(S.G.8), it holds that v,/ *v}/*E{Y(; j) 1, Y(i )., } = 0. which implies 1,/ *v,/* B!, =0 for
any /1 # (5. For any (i, j,@) such that i # j and 4, j # £, by (5.G.8), it holds that

2
_I_
VeB{Y i jy.eYig)e) = (%) Var(Z; ) Var(Zy ;)Var(Z; j) + X; Var(Zi ) ,

which implies

) 2
VZBé’lg) _ <M> Z Var(Z; ¢)Var(Zy j)Var(Z; j)

NN Zweapen /o gme
1
+ N Z )\?jVaI‘(Zi’g)
1,517, 1,5 7L

be

=—+40b
g Th

We complete the proof of (S.G.9). g

G.4.2. Proof of (S.G.10). For any (i, j1, jo, ¢1, {2) such that jq, jo # i, j1 # jo, {1 # {2,
1,j1 # {1 and i, jo # o, by (S.G.8), it holds that

1 2 1 2 ey 1 ey 20 [ Fes, 1 T pe, 2
/ / E{Y ,jl Zly—(l,jz) 2} = < > < >Var(ZZ',£1)
2#(1,1“(1,2 2#5%1#(2,2
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(S.G.13)
x Var(Zy, ¢,)Var(Zie,) I (jo = 1,51 = L2)
which implies

1/2 1/2 5(2) Moy 1T ey 20\ [ Fes, 1 e, 2
Vgl sz 51752 - 2 2
ey 110, 2 272N L T2%)

1
LS Vg Vot e Var(zis)
EED WA
= ,Y—6p—1

for any ¢1 # (5. For any (i, j1, j2,¢) such that j1,jo # i, j1 # jo and i, j1, j2 # ¢, by (5.G.8),
it holds that vy E{Y(; ) ¢Y(i j) 0} = A2 Var(Z; ), which implies

@_ 1 2 _p-3 2 _
wBg =+ o Z . A} Var(Z; ) = r Z A7 Var(Z; ) = (p— 3)by.
,J1,02¢ 151,025 51752, 1iF#L
i41,52#L
We complete the proof of (S.G.10). g

G.4.3. Proof of (S.G.11). For any (’il,ig,j, fl,fg) such that 71, i 75 75 21 75 19, {1 75 ls,
j,i1 # 01 and j,i9 # £2, by (S.G.8), it holds that

V;1/2V;/2E{Y(i1,j),zly(iz,j),ez} = Ao, oAy 0, Var(Zy, ¢,) 1 (i1 = Lo, ip = £1)

2

(S.G.14) n <N€1,l + ,uel,2> (/%,1 + M2’2>Var(Zj,gl)
2:“51,1,“51,2 2”52,1,“52,2

X Val"(Zghgz)Val“(ijz)I(Z'l = EQ,Z.Q = fl) s

which implies

1/2.1/2 (3 YRR YA
v/ "By, = - N > Var(Zu,)
Jij#l, L

<Wl,1 + Mel,2> </%,1 + Wz,2>
_|_
2#51,1#@172 2#(2,1#@272
1
N Z Var(Zj e, )Var(Zy, ¢,)Var(Zj,)
Jij#l Ll
=y 2p L 4y Oyl 461
for any ¢1 # 5. For any (i1, 12, j,¢) such that i1,i9 # j, i1 # i3 and j, i1, 12 # ¢, by (5.G.8),

it holds that v,E{Y(;, ;) ¢Y(i, 5),¢} = 0, which implies VEBE’Z) = (0. We complete the proof of
(S.G.11). O

G.4.4. Proof of (S.G.12). For any (’L'l,jl,’ig,jg,fl,fg) such that 71 #]1 75 0y, 0o 75]2 75
Uy, i1 # g, j1 £ jo and €1 # Lo, by (S.G.8), it holds that

pe 1+ %,2) <wz,1 + %72)\,&1&(2%[1)
20,1140, 2 24001 1005,2

x Var(Zy, ¢,)Var(Z;, o,)1(j2 = i1,12 = £1, j1 = {2)

fhey 1+ Wl,2> </%,1 + fhe, 2
21“(1,11“@172 2#(2&“(2,2

1/2 1/2
Vzl/ ’%/ E{Y i1 10,00 Yiia o) 2} = (

(S.G.15) + < >Var(Zghg2)
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X Var(Zghb)Var(ngw)I(z'l = EQ,jg = 6172‘2 :jl)
+ Afl,szZmélvar(Zfl,ez)I(il = 627 i2 = El) 5

which implies

1/2 1/2 p(4) By 1T ey 20\ [ Fes, 1 T e, 2
Vél sz 41752 - 2 2
Ky 110e, 2 Ky 110052

Z Var(Z; ¢, )Var(Zy, 4,)Var(Z; 4,)

il o
Aoy 0Ny 0
+ % Z Var(Z, 4,)
Ji,d2: J1# g2, j1,G27 4 L2
-6 1 2
=y7pT

for any ¢y # fo. For any (i1, j1,172,j2,¢) such that iy # ji, iz # jo, i1 # 72, j1 # jo and
11,12, j1,J2 7# £, by (S.G.8), it holds that

He1 + o2
VZE{}/(ihj&),ZYv(iz,jz),e} = <W> Val“( 217 )
x Var(Zy;,)Var(Z;, 4,)1 (i1 = jo,i2 = j1),

which implies

1) <,Uél+,ué2> 1 3 b
wB,, = ————= ) — Var(Z;, o)Var(Z;,)Var(Z;, 4,) = = -
0,0 2 11,02
2M€71M€72 N il,i23i1¢i27i17’l’2;&€ 2
We complete the proof of (S.G.12). g

G.5. Proof of Lemma 5. For Y|, ;) , defined as (S.E.2), let {V/; jy ¢}ij.c.ij¢ be mean
zero normal distributed random variables that independent of the sequence {Y(Z ), 0i gt ititt

and COV{‘/(Zl J1)s 617‘/(12,32 62} COV{Yzl J1)s ZNYV(ZQ J2) 62} for any (Zl,jl,gl) and (Z27]27€2)

such that iy # ji # {1 and iy # jo # l2. Weset V(; ) p = 0if £ =i or j. Let{W” g}ljg oy

be an independent copy of {V i 7(}27] titjze- We also set Wi, 5y o =01if £ =i or j. For each

pair (i, 7) such that ¢ # 7, deﬁne three p-dimensional vectors y; iy = {Y(; j).1,- -+ Y(ij)p) >

Viig) = WVig)i > Vi)t and we sy = {W; 15, Wi )t - For h specified in

(S.E.3), we know h = N—1/2 Zij,#] ( ). Recall Cov( ) = B. Then
\/_va OB)andg—TZWJNN(OB)

0,1 1] 0,0 1]
Define c(t) =), ., ;€@ j)(t) for any ¢ € [0, 1], where

(5.G.16) C(iJ)( )= \/—_[\/_{\/Ey i) + V1 V(i) }+ V1—=1twg ]

gr{iite i) () ={c@1(t),- - ci)p(t)} . Then ¢(1) = /vh + /1 —vg and ¢(0) =
efine

1

it
and write €; ;)(t) = {¢( ;)1 (t), -+, ¢G5 p(t)} . Then

— gfe(V)} - g{e(0)} = /dq“ =1y Z/ ae{e(t) gy (0) dt

1,5 i#j £=1

. 1
(S.G.17) i (t) = {(Voyag +vV1—vvijt— 7“’@4)]

V-t
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which implies

%ZZ/ [arte(®)} o o(1)] di

i,jri#j =1
Recall
) 1 ]1 1
Cinelt) = 5 | VYt VI = WVag ek = =W
and Y, jy.0 = V(i j),0 = Wi j),0 = 0 for £ =i or j. It then holds that

1
(S.G.18) ET)=5 >, / [ae{e(t)}éqg),e(1)] dt
1,50 i#£j#L
Notice that Y(; i sisa functlon of {ZM, Zg], ”} Given (i,j,¢) such that ¢ # j # {, we
first consider {Z, 2 Zg j»Zi;} will appear in which Yiir jry,e’s. Recall

12 (Heat e 2 s o > >
Y jn.e = v {(7 ZiwZp g Zip o — N Zie g ¢ -
2000 1 e 2

Then Z; o will appear in Y(Z/ ), such that either (i',£") = (i,£), (¢, ") = (i,£) or (¢',5") =

(4,¢) holds. Since Zg = ZZ ¢, we know ZZ ¢ is also not independent of Y(;: ;) , such that ei-
ther (', ¢") = (¢,1), (6’,]‘ ) = (£,4) or (,5") = (¢,7) holds. Given i and € such that i # ¢,

let Si(i,0) = {(&,5,¢) : {i',7'} = {z’,@}} u{(, 5, 0) {50 ={i, 03y U {(,5,0) :
{¢',i"} = {i,£}}. Then we have Z;, is independent of {Y{; ;) ¢ }@ir jr,e)¢s. (i,0)- For any
(i,7,¢) such that i # j # ¢, define

We know Y/; ;) ¢ is independent of {Y(Z-,,j }(Z, J0)¢S(ij,0)- For any (i,7,¢) and (7,5, 0")
such that i # j # £ and 7’ # j' # 0/, let a(mé =I{(/,5,¢") € S(i,5,¢)}. For given (i, j, ()

(2’ / gl
such that 7 # j # £, we set agzjjfjg o =0if e {d',j'}. Write
(,5,0) _ ¢ (4.3,0) (i,5,)
a(i',j/) - { (’V,j'),l’ L) a(i’,j’),p}
and define
3.4 i,7),0 X T i,j,0
() = {e" (), D)} = D e () 0ali ey,

i i
where o denotes the Hadamard product. Let
We can see that ¢~ (»)-£(t) is independent of {Z; s, Zy j, Z; ;}. By Taylor expansion,

1 1
/E[(M{C(t)}é(i,j),f(t)] dt:/ E[qe{c™ (0 e 5),0(1)] dt
0 0

Il (7’7] Z)

+Z / {0, (O )] e

12(27]7£7k)
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p

1 1
+> /0 /0 (1 —7)E[gaa{c™ (1) 4 7@ (1)}

k=1
A L. (7‘7.])7Z (Zvj)vg d d
X c(w)j(t)ck (t)g (t)] Tdt .

IS(ivjvevkvl)

Together with (S.G.18), we have

E(T) = > L0+ > > L(ijtk)

0,4, i j A 0,4l i j AL k=1
p p
+ > D D Bla LD+ > Y T4, 4610).
i, 0k kA0 =1 i, 0 i A0 1=1
As shown in Sections G.6—G.8, it holds that
(S.G.19) > L(ig =0,
Z7J7Z:Z¢]#Z
p
(8.G.20) > D (i 6k Sp e log™ P p,

0,50 iA A0 k=1

p
(S.G.21) o> a6k D Sp 8% log™ P p.
i 0 it A0k l=1

Then sup,c(o,1 [E(T)] < p~12¢310g™/? p. We complete the proof of Lemma 5. O

G.6. Proof of (§.G.19). To simplify the notation and without causing much confusion,
we write c(t), ¢~ (1)4(¢), c,(;’])’z(t), c(ig).e(t) and é; j) o(t) as ¢, ¢~ BI)E c,(;’])’e, ¢(ij),0 and
C(i,j),0» respectively. Recall

qilc ( J)l}c(i,j),@ _ T %{\/EY(MM +v1-— ’UV(Z‘,]‘),Z} - ﬁw(i,j),é .

Since Y{; ;)¢ is independent of ¢~ (%9, then
Elge{c™ DY 5] =0.

Notice that Vi;/ ;i) o with &’ # j' # " included in ¢~ ) satisfies |{4/, 5,0’} N {i,5,0}] <
1. It follows from (S.G.13), (S.G.14) and (S.G.15) that Cov{Y{y jr ¢, Y(; 74} = O for
any i’ # j' # £ such that [{7',j,¢'} N {i,j,0}| < 1. Since Cov{Vii jy.e Viij)e} =
Cov{Y(ir i) Yiij)et> then Cov{Viy i ¢, Vi; 50} = 0 for any i’ # j° # ' such that
i, 4", '3 0 {i, 4, £}] < 1. Recall that {V{; ;) ¢}i j.¢. ¢ are normal random variables. There-
fore, V{; j.¢ 1s independent of ¢~ (9L Then

E[Qz{c_a’j)’z}v(i,j),z] =0.

Analogously, we also have E[qg{c_(ivj)vé}W(i,j),g] = 0. Hence, I;(,7,¢) =0 for any i # j #
£. We complete the proof of (S.G.19). a
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G.7. Proof of (S.G.20). To simplify the notation and without causing much confusion,

we write c(t), ¢~ (1)4(¢), c,(;’])’z(t), cij),e(t) and ¢(; ) (1) as c c, ¢~ (), c,(;’])’z, C(i,j),¢ and
C(i,5),0» respectively. Due to c](;’]) £ = =y . ik C3), kagl g ; 5> then

(5.G.22) Z I, k Z / QZk{C i3, }C (4,5),6C(i" 5" kaE J’g ]dt

Vg #Eg
Notice that

Z Z|I2(Z7]7€7k)|: Z Z |I2(27]7£7k)|+ Z |12(27]7£7Z)|

i.4,0: i AL k=1 5,0 150 k: ki g0 5,0 i
+ Y i)+ D 440
i.5,0: 1AL i.5,0: 1AL
As we will show in Sections G.7.1 and G.7.2, it holds that
lo
(S.G.23) Y Y LGRS & 1g/2 p,
§.5,0: i A0k ki gl
o o o 310g7/?
(5.G.24) S {0 di )]+ Mo, 6.9)] + [lali g 0,0} S TP
Ry p

G.7.1. Casel:k #1,j,0. Notethati’ # j" and k # i, j, /. Due to a ’].Z =1, 5 k) €

S(i,5,0)} for k ¢ {i',§'} and a ’].Z; =0 for k € {¢/,5'}, then agjjjljg . = 1 if and only if

{¢/, 7'} € {4,7,¢}. It follows from (S5.G.22) that

12(2‘7]‘767 k)

1 1
:/0 E (g {c™ "D Y e eci0k) dt+/0 E[qou{c™ "D e s ecwin] dt

(5.G.25)
1 1
+/0 E[qor{c™ DY e 4 ey k) dt+/0 E[qou{c™ "D Y e 5 i n] dt

1 1
+/0 E[QZk{c_(l’])’Z}é(i,j),fc(j,f),k] dt-i-/o E[QZk{C_(w)’Z}é(i,j),fc(f,j),k] dt.

Notice that
€(69).0.0).h [\[{\/_Yw e T V=0Vt = %me
X [VHV Y00+ VT =0V n k) + VI = Wi k] -
As shown in Section G.6, {Y{; ;) s, Vii.j).c» W(i.j).c} is independent of ¢~ ()£, Then
N -E[ga{c™ Ve ) ocion)]
(5.G.26) =vE [QZk{C_(i’j)’z}Y(i Yo x) + (11— U)E[Qek{C_(i’j)’é}V(m),zV(m),k]
— E[qa{c™ "W 5 oW r] -
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Recall Y{; ¢ ; is a function of {Z,k, ZOW’ ZOM}, and ¢~ (%):f is independent of ZOM. We will
remove the components in ¢~ (9L that depend on Z,k and ZOW' As we have shown that ZZ j
is independent of {Y(;s ) ¢ }(ir jo.0)¢s. (i,j) for any given i and j, we define

(3,3),6,(,0) .k _ (i.50) | o (k) (k0) _ (1,3.0) _ (i.k)
c = D <wq o{agl) +ag ) +au )~ au) © a0 )
i3 i g
(1:5:) o o (k.0) (i,k) (k,0) | (30 o (6k) (k.0)
=305 © Ay T A ) © By T AG O A5 © A g }

where a(:J]), = {a 81]]/ 1 ,a(z,]/ 17 with aE”?/ o=@, 5 0) € Si(i, )} for £ #

i',j" and aE ]?) =0 for ' € {7, j'}. Therefore, we know {Y{; ;) ¢, Y(; ») 1} is independent
of ¢ — B4k Recall ()8 = ZZ, it Cir,g) © ag }J’,g Then

Gl LDk _ (i)t
={c(ik) + Cki) T Cek) T Croyt o (1l —€ —e; —e,—ep)

(5.G.27) + Z {Ck,m),i + Clm,k),i € + Z {cth,m) .0 + Comp) e e
m;éi,j,é,k m7éi7j7é7k

+ Z {c(i,m) i+ Cmai) ke + Cem) b + Cmo) k Y€k
m;éivjvévk

where 1 is a p-dimensional vector with all components being 1, and e, is a p-dimensional
vector with the s-th component being 1 and other components being 0. Let

c_(l,]),€7(l,€),k =Cc— C(Zvj)vev(zve)vk
Recall ¢~ ()¢ = ¢ — ¢(#9), Then

C(i,j),f,(i,f),k)—(’hj),é = c_(ivj)vz — C_(ivj)vév(ivé)vk — C(i,j),f,(i,f),k) — C(ivj)ve

Write c(i,j),é,(i,é),k—(i,]")jf :'{cgivj)vév(ivé)vk_(ivj)767 o c](; 7)56,(8,0),k—(3,5),¢ }7. Since {Yii )0, Yoo i}
is independent of ¢~ (#9)4:(0:% by Taylor expansion, it holds that

E[aa{c™ Y Yig),0Yi0 4] = Elan{c” WO B{Y ) Vi a )
p 1
_|_ Z / E[qka{c_(ivj)vev(ivavk + Tc(i,j),f,(i,f),k)—(’iJ),é}
m=1"0

X }/(i,j),f}/(i,f),kcg)i’j)’&(i!)’k_(i’j)l] dT.

Notice that for any V(s j»y » and W ;i) o with i' # 7 # ¢ included in ¢ (B9).4(0.0.k
Covi{Viij).e Viinjne } = CoviWiigye, Wea i ,er} = Covi{Yii )0 Yo jne } =0,
Cov{Viio) ks Vierjy.e } = CoviWi 0y s Wiar jy.er } = Cov{Yi o) ks Yior joy,er } = 0.

Since Vi; 5.0, Vii o) ks Wi j),e and Wi, ¢y ;. are normal random variables, then {‘/(i’j)’g, Vii,0) ks
Wi iy.e Wi, «} is independent of ¢~ (0):6300k, Analogously, we also have

E[qu{c™ "MW iy Viio ) = Elage{c™ D EEOREIVG & Vi o n )

p 1
+ Z /0 E [qékm{c_(lv.?)7£7(lvg)vk + TC(Z’J)’Z’(Z’Z)’k_(Z"])’Z}
m=1
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‘7‘ 757 ‘7Z 7k_ '7' 7£
X Vo). Vi e oGO 0D ar

E[gen{c™ VWi j) Wi o] = Elga{e D ECOMEIWG 5y Wi 0}
p 1
n / E [ quun {e— (DGO 4 ()00 k()¢

X W(id)xW(Lg)7k6%’j)’é’(i’é)’k_(i’j)’Z] dr.

Recall E{Yv(hj)’g}/(i’g)’k} = E{Vv(i’j)’g‘/(i’g)k} = E{W(i,j),ZW(i,Z),k}' Then (SG26) 1mphes
that

N - E[%k{C_(i7j)7é}é(z’7j)7éc(i,€),k]

b 1
(S.ng) — Z / E [qekm{c_(ivj)vév(ivé)vk + Tc(i,j),&(i,f),k?—(Lj),Z}C%,j),é,(’i,é%k—(i,j),Z
m=1"0

x {vY 5000k + =0V Vo x — W )eWio k] dr.
Define
Ev={Y0).0l V Vi gyl VIW (i jy,o] < B forany i # j # £}

for some B > 0 that will be specified later. Write v = py~2 + 5. Then v = MaXge[p) Vs =<
minge(, vs. Recall Var{V; ;) } = Var{W; ;) ,} = Var{Y{; ;) ¢}. As shown in Section
G.4.1, Var{V; j) o} =< vy 6 < Var{W(; ;) ¢}. Since V{; ;) , and W(; ;) , are normal ran-
dom variables with mean zero, then

max |V =v" 2y 0y(log"?p) = max Wl

i,J,6 £ F#L i,J,6:1# 7k
Notice that max; j ¢ izj20 |Y(i j).0l S v 12473 Recall v = py =2+~ 6. Thenv=1/2y=3 < 1.
1/2

Selecting B = C, log!/? p for a sufficiently large constant C,, > 0, then P(£) < p~¢, where
C' > 0 can be sufficiently large if we select a sufficiently large C,. For given (i, j, ¢, k) such
that i # j # { # k, restricted on &1, it holds that

s 605 1
’C(Z’])’Z‘Oo < —+ e Z Y(sl,m)782
\/N s1,82:81783 \/Nm;éi,j,é,k
s1,82€{i,j,0}
1
+ Z T~ Z }/(m,sl),s2
s1,52: 81782 \/N m#i,j,0,k
s1,826{d,5,£}
1
(5.G.29) + Y T Y Visimyss
2o ten Mg bk
s1.82€{i.d.0}
1
+ Z = Z ‘/(m,sl),52
51,821 51#52 \/N m#i,j,0,k
s1.s0€{i,5,0}
1
+ Z = Z W(81,m)782
51,82 51#52 \/N m#£i,5,0,k
s1.82€{i.d.0}
1
+ Z Y~ Z W(m,sl),S2 )
s1.52:51#s2 \/N m#i,j,0,k

s1,89€{i,5,0}
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et 0 k=) < 248

VN

1
\/—N Z Yv(sl ,M),S2

m:m#i,j,0.k

51,892:81#52
s1,s0€{i, Lk}

1
FY s T Ve
s1,82:81#82 \/Nm;m;éijﬁk
LR INEAS]
1
+ Z — Z ‘/v(817m),52
51,80:81#89 N m: m7£i7j7£7k
s1,80€{i,0,k}
1
s D D DR
cvemmren (VN
s1,89€{i,0,k} o
1
+ Z R Z W(sl,m),82
S1,52: 81752 N m:m#i,j,0,k
s1,80€{i,0,k}
1
+ D VN D Wil
51,80:81#89 m:maé@j,ka

s1,80€{i,0,k}
which implies that

1 1
<24 max {‘— Z }/(51 m),s2 +‘— Z Yv(m81)82 }
e UVN mti g0k VN S
(5.G.31)
1 1
2 {2 ¥ Vw2 X Vo]
aurera, UVN Y VN mi,j,0,k
1
+ 24 slwglzliéf;sz {‘\/_ Z W(Sl7m 52 ‘ \/_ Z W(m781)752 }
s1,82€{i,4,0,k} m##i,j, 0k m##i,j,0,k

848

VN

under &;. Given s1, sg € {1, 7, ¢, k} such that s; # s2, we have

1 —1/2 ( Hsa1 T+ sy 2
T X Vime =i e S 2

m#i,j, bk m#i,7,0,k

S2

p—4 _ :
- WV 1/2)\51752281,82 .

- A3 — mi - ~—1 o

Recall that maxge(p) ke{1,2) s,k =<V = Milgelp] ke (1,2} Ks,k> MAXs, 5,15, %5, Asp e X7 X
: < 1 — i i — -2 - —

Mg, 5,0 5,25, Asy,s00 MAXg[p] Vs X VX Milge[y) Vs With v =py™= + 6 and N = (p —

1)(p — 2). Then

~ 1/2

o o 1
Z ZS2,stl,m' + m

m;ézyfk

Ysl,m ,52
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Notice that v=1/2y=1 < p=1/2 =1/24=3 <1 and {Zosl,mZOS27m}m#7j,k7g is an independent
sequence with mean zero. By Bernstein inequality,

<\/_ Z ZS2, Zshm‘ >§exp(—0pu2)

m#i,j,0,k
for any u = o(1), which implies

1
ﬁ Z }/k317m),82

i bk
- C 1 0 log'/? p _0 log'/? p
(S.G.32) < m + m -Up T =Y T :

Analogously, we also have
10g1/2
)sz| = O <17/2 '

Note that Cov{V(i, j,).er> Viis,jo)ta} = COVY(i, i) tas Yiin,jo),bo }- As shown in Sections
G.4.1 and G.4.2, we have

max
,]Zk z;ﬁ];ﬁ@;ﬁk 1 S2 1# 2

j.e.k}

f > Yoy

ma
NENE l#k 5152 1#82
1.7, 275)75 # o o

sg€{i,j,0,k}

1 /’1/8271 + ILL82,2 2
COV{V(sl,mst ‘/(Sl,m)732} = I/_ <m> Va‘r(ZSI,SQ)Var(ZS27m)Var(ZSI7m)

/\2
+ ﬁVar(Zsl,&)

Vs,

and Cov{Vs1 m),829 V(shm/),Sz} =v; 1)\31 s, Var(Zs, s,) for any m # m/. Recall v = py~2 +
-6
. Then

P 1
{ > Vm} V <—+p> =p-
m%i,j,0,k ’Y ’Y

Since {V(Sl,mm2 }m;«éi,jl,k are normal random variables with mean zero, then it holds that
N~1/2 > mei j.0.k Visi.m),s, 18 also a normal random variable with mean zero and variance

N=WVar{>>, ;i ok Visim),sa} <P~ Therefore,
1 1/2
o, <y> '
p'/?

Also, as shown in Section G.4.3, Cov{V(m,sl)’527 Vi s1),8: 5 = COV{Y(m51),05 Y/ 61),80 ) =
0 for any m # m’ and m,m’ ¢ {i,j,¢,k}. Then N—1/2 Zm;éi 0k Vim,s,).s, 18 a normal ran-
dom variable with mean zero and variance N ! Zm# s e Var{ Vi, o)., } < p v ly76,

Notice that v =< py~2 +~7%. Then N~! Zm;ﬁi,j,é,k Var{ Vi s,),. 'S p~ !, which implies

logl/2
o)

1
$.G.33 — Ve, o,
( ) \/N Z (17 )7

L i e ko max#
. 1 S2:81F82
1,3, ki jF#LFE o

so€q{i,j,4,k}

(5.G.34)

1
\/—N Z ‘/(m,sl),52

SR eI max#
. 51 82:81782
1,9,k i jF#LFE 2 i g Ok

PR

Identically,

\/— Z W(sl,m ),s

._Mmaxm max
1,5, ki j A LF L Mgk

0k}
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IOg1/2 > 1
=0, <7 = A N Z W
1/2 S1,82: 81752 (mos1).92
p / bk z;ﬁ];ﬁf;ﬁk s1,82€{1, J;é@ k} N m#i,j, b,k
Define
1 C** 10g1/2p
)= { e [0 3 Y] < SR
o1.opt ey 1 92 [ — 1 2
sl,sge{i,fz,k} m#i,5,0,k b :

C**l 1/2
max §M forany i £ j#£L#£k
51v323§1?£52 p1/2
s1,80€{i,5,¢,k}

1
\/—N Z Yv(m,sl)782

m#ivjvevk

for some sufficiently large constant C, > 0. We can also define (V') and E (W) in the
same manner. Let

(8.G.35) E = EQ(Y) N SQ(V) N 52(W) .

Then P(E5) < p~¢, where C can be sufficiently large if we select a sufficiently large C..
Recall B = C, logl/2 p. Restricted on £ N &, by (S.G.31), we have

1/2 1/2
‘C(i’j)’g . (T . 1)C(i’j)’Z’(i’z)’k_(i’j)’g‘ < 840* lOg / p 1440** log / P

gLk A A *©= N2 pl/2
As p — 00, if ¢ < p'/?(log p)~%/2, it holds that
84C, log'?p  144C,,log?p 3

N1/2 pl/2 < 43
with 5 = ¢ log p, which implies that

SG36 (Z’J)7£ — — 1 (Zvj)7£7(17£)7k_(27.])7z <
( ) b Ak e (r=1)e o 43

under &1 N &,.

As shown in Lemma A.5 of Chernozhukov, Chetverikov and Kato (2013), there exists
Uk (v) such that [gem (V)| < Ugpyn(v) for any v € RP, where 77, ) Usin (V) S oYoR
for any v € RP. Thus, (S.G.28) leads to

663 Y Y N Blande i | S T + T
U#£i,j k#i,5,L
with

,]7 lng Z Z Z/ ng {C (4.9),4,(i,6),k +TC( 4,5),¢,(4,0),k—(1,5),¢ }

U#£i,5 k#i,5m=1

X |C(ivj)7zv(i7€)7k_(i7j)vé| . I(gl ﬂ 82)] dT,

T,=% % Z / (EC U ES) - Uppyn {e— o000 4 - c(00).000.0.8—Gi) 8y

0#£i,5 k#i,5,0 m=1
X {IY5),e1YG,0.5 0+ 1V, Ve il + W i), IWae k1t

GO RG] .
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Due to C_(ivj)vgy(ivg)vk _|_ Tc(ivj)vgy(ivg)vk_(iyj)7Z =C — c(ivj)vg + (7- — 1)C(i7j)7Z7(i7z)7k_(i7j)7£’ to-
gether with (S.G.36), Lemma A.6 of Chernozhukov, Chetverikov and Kato (2013) implies
that, restricted on & N &,,

Utk (€) S Upn {c™ GDOGOR 1 7e0DEGOR=0D0 <7y (c)

for any 7 € [0, 1]. Thus,
L << 2 (’iJ),é,(’i,é%k‘—(i,j),f
Tijo S 08 (logp)E{I(El ﬂﬁz)k{g%@\c \oo}-
Restricted on £ N &y, it follows from (S.G.30) that

1/2 1/2
max |clDLG0 k=)0 o 240108 p  6C.log'?p

k0 k¢ - pl/2 pl/2 ’
which implies
¢ log®? p
(S$.G.38) Tiji S i

Schwarz inequality, it holds that

P
Tijo S 082y D D E[IE L&) 0k

03, ki, 0m=1
X Y06 Y06 + Vi IViao.kl + W i.e IWe ok}
SPPepPPA (7 L ES)

x e?ﬁ?ﬁﬁm [[cCAEEOR=EIE2 1V 5 o P 1Yo + Vi) e Vi il

+ |W(i,j),£|2|W(i,Z),k|2}]
S PPOPER U ES) oy EVH{|elIACORGIL Y ) %)

X EI/S{\Y(M),MS}
+p3¢52pl/2(810 U 520) ZIE%;{]CEI/‘l{|C(i7j)7£’(i7£)7k_(i’j)’z|§o}El/g{“/(i,j),ﬂg}

x EYV8{|Vi;.0 1%},
where the last step is based on the fact {V(; ;) ¢, Vii.o) i} and {W; 5y 0, Wi o) 1} are identi-
cally distributed. Notice that max; j ¢ izj£¢|Y(i jy.0| S v=1/24=3 <1 and Viij),¢ 1s @ normal
distributed random variable with Var{V{; ;) ,} < v~ '4~% < 1. Thus

Tijo < pPoB P2 (EC U ES) erlg%;{kElM{ |c(i,j),&(i,f),k—(ivj)vqgo} )

By (S5.G.27), following the same arguments for (S.G.32), (S.G.33) and (S.G.34), we have
Jmax, {le %} S 1,

which implies T; 2 < pP¢B2PY2(E7 U E5). Recall P(Ef U ES) < p~C and C can be suffi-

ciently large if we select two sufficiently large constants C, and C., in the definition of &;

and &. Hence, with suitable selection of (C., C.), we have

957 10g’? p
Tij2 S T
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Together with (S.G.38), (S.G.37) implies that

)IEDD

03,5 k: k#1i,5,0

¢B%1og® % p
/ QZk{C g, }C(Z] LC(3i,0),k ]dt ST

holds uniformly over (7, j) such that ¢ # j. Following the same arguments, we can bound the
other terms in (S.G.25). Then

2
Z Z Lo (i, 4,4, k)| Qﬁﬁ 1;)/g2 P

C:l#£i,5 k: k#i,5,0
holds uniformly over (4, j) such that i # j. Since 5 = ¢log p, we then have (S.G.23). O

G.7.2. Case 2: k =1,j,L. We first consider the case with k£ = . Notice that c(;/ jy; =0
if ¢/ =4 or j/ = i. By (5.G.22), it holds that

1 1
la(i,g 6,4 = /0 E[qui{c™ D Y 5y ec05).0) b+ / E[qui{c™ O Y 5).ec.04] A

+ / [qei{ ™ Ve ) wcm gy ) At

m##i,j,0 0
+ Z / QZ {C ing), Z}C(z,j (m,é),i] dt
m#i,j,L 0
+ Z / %{C g }C(Z,] LC(5,m) z]
m#i,j .l
+ Z / Q&{C b, Z}C(z,] (,M)J] de.
m##i,j,0
Note that
. 1
C(i,j)e_\/——[\[{\/_y(z,j et V=Vt — ﬁw(i,j),f
€(5.0)5i [\[{WY(M VIVt V=Wl -

As shown in Sections G.5 and G.6, {Y{; j ¢, Vii.).e» W(i j)¢} is independent of ¢~ (4, Fol-
lowing the same arguments in Section G.6 to show V( j),¢ i independent of c )L we
also know {V(] 0)i> W(] ¢),i} is independent of c —(@9):£, Notice that Y(J 0)i is a function of
(ZJ Z,ZM, ZJ 0) = (Z”, ZM, Zg]) and Y{; j) , is a function of (Z”,ZM,ZM) Based on the
arguments to show Y{; ;) , is independent of ¢ —(69):£ | we know Y{;,0),i 1 also independent of
¢~ ()t Then

N-E [Qm'{C_(i’j)’Z}é(i,j),zc(jl),i}
= oE [qui{c™ DY ELY G ) oY} + (1= 0)E [ga{e™ OBV ) o Vi i}
— Elge{c™ WY E{W 51,0W 0.0}
—0.
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Analogously, we also have E[QM{C_(i’j)’Z}C.(i’j)’gC(g’j)’i] =0. Then

1
Li.j.li)= Y. /E[%‘{C WY ) iCm gya) dE
m+£i,j,0” 0
(SG39) + Z / Q&{C i3 Z}C(z,j (m,é),i] dt
m##i,j,0
+ Z / Qm{c i3, }c(z,] LC(5,m) z]
m##i,j,0
5 [ R i
m#i,j,Ll

In the sequel, we only need to bound each term in (S.G.39). For E[QZi{C_(i’j)’Z}C.(id)’gC(&m)’i]
with m # 1, j, £, it holds that

N-E [QZZ'{C ), }C(z,] LC,m), z]
=B [qa{c™ VY ), Yiem)) + (1= 0)E[ga{e™ "MV ) Viem) ]
—E [QZ {C (&:9), Z}W KW(Z m), z] :

Following the same arguments in Section G.6 to show V|, ;) , is independent of c ) we
also have {V(y ) i» W(e,m),i} is independent of ¢~ (9 Thus,

N -E[gu{c™ "D Yé 5 00 0m).i)
(S.G.40) =k [qgi{c_(” ’Z}Y(i,j),zY(e,m),i] —vE [QZi{c_(i’j)’z}]E{Y(i,j),éy(f,m),i}’

Notice that Y{; ) ; is a function of {ZOM, Zoz-m7 Zog’m}, and c(;r ;i) ¢’s involving ZM are not
included in ¢~ (%9)-£, Similar to the strategy used in Section G.7.1, we can remove c¢(;s jn) ¢S
that related to {Zog,m, sz} from ¢~ (%), Define
i,5), 6 (6m) i _ (4.5,6) (¢,m) (4,m) (4,3,0)  ,(&:m)

C(Z]) ( m) v = Z C(’i/7j/) { ( ) + a(l ] ) + a(l 7]’/) - a(z/ 57 Oa(' ;

i g

_ g6l o Em) (Em) o (im) (i:3:0) o o(bm) . (im)

A7) © B(i ) ~ o) © gy T © B © g |

for ag 7 Z; and aE . ),) specified, respectively, in Sections G.5 and G.7.1. Then {}/(i’j)’g, Y(g,mM}

is independent of ¢~ (:6(EMT = ¢ — ¢(BD)LEM)T e () EM) =008 = ¢=(00)F —
¢~ (@)6(Em) i Then it h(old§ that c)EEm) =0 — (@)L(Em)i _ olid) L Recall ¢l
= it G ) © g, ’j’. ot We have

DEEMI=EDE = {0 + Cmey + C(im) + Cmy} 0 (1 — € — € — eg —ep,)

+ Z {c(u,m),i + C(m,u),i }ei + Z {c(u,m),é + c(m,u),é}ef

u#lvj Z m U‘;éivjvévm

+ Z {C(u l) m T C(l,u) m T Cluyi),m + Ci,u) }em
u#i,j,l,m
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Write c(6:3),6(€m),i—(i,5).¢ { (4,5)4,(€;m) i—(4,5) ¢ e S:J) 4, (€m)i—(4,5) ¢ }T By Taylor ex-

pansmn,

Elgei{c™ YY) Yiem) ) = Elaa{e” D EMNEY ) Y em.i}
1
n / B [qggso fe (M Emii | 7 i) (Em).i=(i.).¢
§ [ }

% }/(Lj)7(}/‘(&7”)7icgi,j)7é,(é,m)7i—(i,j),é] dT .
Together with (S.G.40), it holds that
|IN-E [QZi{C_(i7j)7é}é(i7j)7éc(&m),i] |

R (ij,6:m)
p 1
_|_ Z/O E qul's{c_(l’])’&(&m)’l + TC(Z,]),Z,(Z,m),l—(l,]),f}‘
=1

Df(z,] Z||}/(gm z||C i,9),4,(6,m) i—( ,j),é” dr

R2(i,j,£,m)
Note that
(7/7.7) ¢ (Z m) + TC( 7]) ¢ (va)vi_(ivj)vé =C — c(ivj)vé —+ (7— — 1)c(i7j)7é7(évm)vi_(ivj)vé .

Following the identical arguments in Section G.7.1 for bounding the term on the right-hand
side of (S.G.28), we have

2
(S.G.41) > Y Reitm) S < 98%log™p

1/2
i1i#£j,ml: b#£i,5,m

By Taylor expansion,

E[gei{c™ D)) — E[gu{c™BHEmy]
p 1
= Z/ E[quS{C_(i’j)’Z’(Z’m)’i + Tc(’hj),é,(é,m),’i—(’i,j),é}cgi,j),Z,(&m),i—(i,j),Z] dT .
170

Parellel to (S.G.41), we also have

Z Z Ry(i,5,0,m) < ¢ﬁ 1(1)/g2 P

ir1#£j,ml: b#£i,5,m

Therefore,

Y ¢B2log®? p
Z Z [N E[ge{c (’j)’g}c(i,j),ec(z,m),i] | S Tz

iri£j,ml: 0F£i,5,m

which implies

D

i i

1 21..3/2
i B*lo
Z E[qui{c (’J)’Z}C(i,j),ec(z,m),i] dt| 5 ’ p1/g2 £,

m#ije” 0
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Analogously, we can obtain the same result for other terms in (S.G.39). Recall 5 = ¢logp.
Hence, we have that

S g2 p
> (g i) S Tz
i i
Identically, we also have
31007/2 310a7/2
Y it S ana Y ) s S8R

=~ p =~ P

1,50 i #L 1,5, 0 £ AL
We complete the proof of (S.G.24). O

G.8. Proof of (S.G.21). To simplif‘y‘the notation, we write c(t), ¢~ (®7)4(¢), c,(f’j)’g(t),

ciij),e(t) and ¢(; ) (1) as c, c (i)t c,(j’])’z
(S.G.42) €= {IYgel V Vil V W jy.el <p™?/(4B) forany i # j # £} .
We then have

1 1
Ig(i,j,e,k,z):/ / (1= PE[IE ) quale 0 + 7eli e, ) i gray
0 JO

IS,l(ivjveka)

1 1
+/ / (1=71)E[I(E)qom{c” O Z}c( id), c( Bt (w) | drdt .
0 Jo
Ia 2 (4,7,6,k,0)

Letw(t) =1/(vt A /1 —1) forany t € (0,1). Notice that

, 171
¢t = 5 [%{\/W(mw +V1-oV

s C(i.5),0 and ¢(; j) o, respectively. Define

1
et = =W

Then
) w(t)
<22 Y VIV VW .
e g S =7 max ) {Vgel V Vel VW)l
On the other hand, same as (S.G. 29) it holds that
(4,9),¢ <_ VIV ol VW
i7j,?:ligé}§'7éé|c oo < Wii Jh##ﬂ 0.l V Vi el VIWG ) el }
1
+ max — Y,
1,4,0: iFjFL 1;¢2 VN ;'z (81,m),52
s1,s2€{1,j,£} M7t
Foma Y = Y Y
iA=L VN e T
s1,s2€{1,j,£} M7t
1
(S.G.43) +  max — Vs,
i, i A Z¢ VN ;_Z (51,m),5
s1,s2€{1,j5,£} m7hds
x| Y Vs
LiliEjEl | S \/Nm#” 51)5

s1,89€{i,5,0}
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%\H

+ max E
igbitjre &
§1,82:81752
s1,89€{i,7,0}

Z Wsl,m
m#i,j

Wm81 ),s

QH

+ max g
1,56 i#F#L
S1,82: 81752 J4
s1,82€{1,5,0} m#LJ,

We define
1 C, logl/ Zp
S(Y):{ max o= Y Y .| S —— 75— and
s VN S Y

C*l 1/2
max SM forany i #£j # ¢
31v5233}%32 p1/2
s1,80€{%,5,2}

1
I Z Y—(m7sl)7s2
VN m#i,j,
for some sufficiently large constant C, > 0. We can also define £(V') and £(WW) in the same
manner. Let £ = £(Y) N E(V) NE(W). Using the same arguments in Section G.7.1 to derive
the upper bound of P(E5) for & specified in (S.G.35), it holds that P(£¢) < p~¢, where C
can be sufficiently large if we select a sufficiently large C... Hence, restricted on £, we have

> 1 log!/?
i,j,?:lia;;é);;éé’c ‘OO pz,g?lzi)iﬂ{‘ (4,9) 5’ ’ (4,7) Z‘ ‘W’lj Z‘} + — /2 5
which implies that
(i,5),¢ <w(t) Y, 3VIVE BV I o 13
e el 5 $ 5 max {IVg)e®V Vil V Wil }
w(t)logp
(S.G.44) p A0BD {¥Gg.el V Vi) el V Wi gy el }

P gt

under €. As shown in Lemma A.5 of Chernozhukov, Chetverikov and Kato (2013), there
exists Uyg(v) such that |ge(v)] < Ug(v) for any v € RP, where >, _ Upa(v) S &2
for any v € RP. Then

y4 1
> 00,4, 0.k, 1)] S 687 /0 E{I(EC)..maX. !c‘<,-7j>,er\c<“”rio}dt

g,k,lzl 27]7£:Z7£.77££
25 [ 3 (i,5),¢]2
S.G.45 = ESI(E°NE) max  |éyiy.el|lc™) 0|5, ¢ dE
( ) oB7p /0 { ( ) max 16l | }

1
+¢62p3/0 E{I(ScmEC)i’jgli&;z;#!é(i,j),é!\c(”)’é!go}dt-

Notice that max; ;. ;¢ |Y(,-7j)7g| < C,andV; ;) ,and W(; ;y , are normal random variables.
It holds that

(S5.G.46) P [ijll}liai;#{’ni,j),e’ V Vgl V IWe gy el } > U} < Cp® exp(—Cu?)

for any u > 0. Thus, for £ defined as (S.G.42), we have P(£°) < pdexp(—CB~2p). B
(5.G.44),

1
ESI(ECNE) ma i ol|e®IE 2 }dt
[ E{reens) e e et
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1
—

S
p

E[[(gr:) Jnax {IYi; ,A?’\/’V(z',j),é!g\/’W(i,j),e\g}]

logp ¢
L 1) mas (Yool V Vo V Wi}

By Cauchy-Schwarz inequality, we have

E[I(ﬁ)ﬁ% {IYgy.el V Vgl V Wi g el

< PY2(ge) . B1/2 12 2 )2
<P2e) B2 {1V V Vol V WG}

C
SpgeXp<—B—§>-

Analogously, we also have
Cp
E [I (€9, max_ {¥Gijel v IViigel* v IW@,ﬁ,A?’}} Sp’exp ( - F) :
Hence,
: : ep Cp
(S.G.47) /0 E{I(é’c NnE) idgl;;é};_# |c'(i7j)7g||c(l”)’ |OO} dt < p(logp) exp < - F) .
By Cauchy-Schwarz inequality, it holds that

e{rien e, pas oo et

< PY/2(Ec -E1/2{ max ¢ o2e@E4 }
R ) i,j,ézz‘;z;#‘ (i)l I%

< PY2(ge) . EV/4 v AL R4 (i.3).48 L
S o N 1S o

Notice that IP’(S~ 9 p‘NC, where C' can be sufficiently large if we select a sufficiently large
C, in the definition of £. Thus, with suitable selection of C, we have

1
~ .. 1
C c ; (7'7 )7Z 2
(S.G.48) /0 E{I(g NEY, max [¢).dle |m}dt§pn/2.

Together with (S.G.47) and 5 = ¢logp, (S.G.45) implies that

> Z L3106, 4,6,k 1)| S ¢1B/2 +¢8%p°(log p) exp(—~CpB~?)

i,g, 0 i ALk, I=1
¢° log2p 3,613 ( Cp )
S.G.49 =——+ lo cexp| ———5— |-
( ) 12 ¢°p’log”p - exp Zlogp
In the sequel, we consider I3 5(7, 7,4, k,1). Due to |qexi (V)| < Upgi(v) for any v € RP, by
triangle inequality,

3,24, 5,6, k,1)| S / / (1-7E Sﬂg)ngl{c @) 4 eG4y

(S.G.50) x eyl |7 DA dra
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/ / 1 — T 5 ﬂg )ngl{c 01, —|— Tc(i’j)’e}

x eyl lel e ] drd

Since Y7, 1 Uni(v) S ¢5* for any v € RP, then

// (1 - 7)E[I(E N E)Ugpa{c™ B 4+ 7elbD e, g||c(“ I /’J |]drdt
5¢62/ E[1(E NE9)eqallcB 1)) at

1
o [ E{nemff’). max \e(i,j),zuc“’”%}dt-
0

i,5,0:iFj#L
Same as (S.G.48), we have

Y 3 / / (1= E[I(€ N E)Uga{c 9 1 reliihty

0,5,0: 1Fj ALk I=1

¢*log” p
pL/2

(S.G.51) x ey elle? e drdt <

Restricted on £ N E, (S.G.43) implies that
1 log'/? 3
(i,5)¢ & pP_ 9
it e S g Y T S 1

for sufficiently large p if ¢ < pl/? (log p)_3/ 2 Lemma A.6 of Chernozhukov, Chetverikov and Kato
(2013) implies that, restricted on € N E, Uy(c) < ngl{c_(wm + TC(Z’J)’Z} < U (c) for
any 7 € [0, 1]. Hence,

// (1= PE[I(E NEUnafe 0D 4 7@ e, o[l drat

< /0 E{1( 1 E)Una(€) iy el 1o}
3(1'7;&]”)

Notice that

Clij)k T €Lk T €60k T Ceg) kTt Ceik T Choks EkFi 5L,

> et cgmuit D Ampi +Cmyits fk=1,
m#iujvg m;éz,é

B . '

k Z {C(m,i)J + C(i7m),j} + Z {C(m@’j + c(&m)’j} ,ifk=7,
m;'éivj’Z m;ﬁy,ﬁ

Z {etmjye + Cmye} + Z {Ctm,ire +ciamyet, ifk=1¢.
[ m#,5,¢ m#£i,0

Hence, if k € {3, j, ¢}, we have

EEATIY %ﬁ IR N N o

S1,50: 51752 m#£i,j ¢ §1,82:81752
s1,s2€{i,j,0} s1,82€{1,5,4}

\/— Z (m31 ,82

m#i,j,Ll
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1 1
+ E ] E Vsl,m )82 E : —/_ z : Vm 181),82
s1,89: 81750 VN Y s1,82:817#82 l
s1,s2€{i,5,} m74J, s1,s2€{i,5,} m;ﬁz,j
E E W, E —1 E W,
+ \/_ (s1,m),82 \/N (m,s1),82 |
s1,82i 81782 m##i,j,0 s1,82: 81782 i\J
s1,s2€{i,5,} s1,82€{i,5,0}

Restricted on £ ,

i) - 10g1/2p
max  max ] | < .
1,5, i A ke{i 5,0} p'/?

Since {W/; ;) ,} is an independent copy of {V(; ;) ,} and 327, Up(v) S $B? for any
v € RP, by (S.G.16) and (S.G.17), we have

S>> B bk

0,0 iE Ak ki, 0L 14,5,

SeB” Y E{ max. |G )0l - max  max rcS‘W}

b0, k: k#i,5,0

i,j:1#]
PB%w(t)
(5.G.52) N B -E ijgliiz_#ﬂy(i,j),ﬂs \ |V(z‘,j),z|3 \4 |W(i,j),£|3}
20(t 2w(t
p p igbidipe )
- 9B%w(t)log?p
~Y p )
Z Z Z R3(i7j7€7k7l)
i, 0 1A ALk kg 01 {i,j,0}
~ 68%log'?p (i.4),
sos SO S el el o 40
oB%w(t)log"?p 2 2 2
ST B max AVape™V ViV W}
< OB%w(t)log*?p
~ e :

When k € {i,j} and [ ¢ {1, 7, ¢}, we have

> Rs(i gtk

i,J,0: 1A G AL i, ,0

< 6820210012 p . E S ORI
T T e T

¢3%w(t)log'/? p 2 2 2
ST BN max Vg™V ViV W}

< 9B%w(t)log®?p

P32 ’
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which implies
2,0()1 3/2
(S.G.54) S Y Y Rk S 987w ;/;’g L
0,40 i A ke (i, 5} U 1,50
When k € {i,5} and [ € {i,j, ¢}, we have

Z R3(i7j7£7k7l) 5 ¢52 Ing ' E{ max |C(Z7])’g|}

X
igi i WL

max {‘Y(z‘,j),z‘ V Vi g),el V ‘W(i,j),é‘}

2
_ 9Pw(t)logp E[
~ 03,0 1AL

P
< 9B%w(t)log™?p
~ p

I

which implies

2 3/2
S OY Y Rk “(t;k’g P,

g0 iAj AL ke{i 5} ee{i gt}
Together with (S.G.52), (5.G.53) and (S.G.54), we have

D 2 3/2
. B w(t)log™“ p
§ § § R3(Zaj7€7k7l) 5 p1/2 )

1,5, i #L ks kAL =1

which implies

Z Z Z/ / 1 - T 5 N g)ngl{C ’9 _|_ Tc(i,j),f}

0,0 i AL K kAl 1=1

¢3 log7/2p

(S.G.55) x e el le? )| eE ] drde drdt S 7

Combining (S.G.51) and (S5.G.55), (S.G.50) implies that

> Y S Mtk s B

1,70 i# EL k: k#£L =1

Analogously, we can also show

< d*log"?p
Z Z|1322],ffl| 1/2 .

1,7,0:1£7£L =1
Together with (5.G.49), it holds that

log 7/2 Cp
> Zrlgu,mz <& oo’ exp( ¢210g2p>-
0,5,0:i# £k, l=1

If we select ¢ < p'/2log ™%/ p, we have

Z Z|Igl],€k¢l <Z510§2 b

1,70 i# AL k=1
We complete the proof of (S.G.21).
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G.9. Proof of Lemma 6. Notice that

)
]E 3.7 — = ~
ot = T eple + 64 6

~
1+exp(—€—60; —0;)
Recall £ = —wlogp + &1 and 6, = wo logp + é} for all ¢ € S, where w; € [0,2) and wy €
[0,1) such that 0 < wy —ws < 1, and |¢] Vmaxes |0, | = o(log p). Write x,, = exp(—|¢F|V
maXyes ’éz_‘)

Fori € S and j € 8¢, it holds that£+éi+éj = (w2 —wl)logp+£++é;r. If wi > wo, due
to 0 < eXp(£+éi+éj) < 1land —€ —6; —éj = logp, then E{go(,-7j)70} Zvand E{p; 1} 2
pr_wlx 7. If wy = wa, then E{w(; 50} 2 X;ﬂ and E{p; )1} 2 X;ﬂ For i, j € 8¢, it holds
that £ +0; +0; = —w; logp + &F. If wy = 0, then E{gp(” 0} 2 xpy and E{pg iy1} 2 xp7-
If w; >0, due to 0 < exp(é +60; +60;) < 1 and —¢ — 0; — 0; = logp, then E{p(; )0} 27
and E{¢(; jy1} 2 p~“* Xy Therefore, we have

and E{Sﬁ(i,j),l} =

VI (w1 > wo) + X2y (wy =wy), ifieS,jese,
(S.G.56) E{¢G 0} 2 ' o
v (w1 >0) +xpyl(w1=0), ifi,jese,
Wa—w1 2 e . c
PN ifies, je€8°,
(5.G.57) Elounat 2
P XY ifi,7€8°.

G.9.1. Lower bound of mingeg te,1-  Recall that

peg = |,H| > E{e(,0.196,) 0951}
(Z,])E’Hz

where Hy = {(4,7) : 4,7 # £ such that i < j}. For any £ € S, we have
2AHelper > D B{Lp0,190.5)0951}
1,JESCi#£]
By (S.G.56) and (S.G.57), due to s < p, it holds that
> E{ea0106.900wa} 202G
i,jES i)
Due to H, = p?, then

20.)2 —20.)1

: > 5.3

min g1 2 p Xp° -

We obtain the lower bound of minges 1. O
G.9.2. Lower bound of mingese p1p1. Forany £ € S¢, we have
2| Helpen > Z E{©@,0),19(,5),09(,5),1} -

i,§ESC i, ji,0

By (S.G.56) and (S.G.57), due to s < p, it holds that
Yo E{panieunepeit 2p 000
i,jESe il j£Li

Due to H, = p?, then

20.)1

. - 3.3
min > .
min e 2PN

We obtain the lower bound of mingese fig,1. O
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G.9.3. Lower bound of minges jig2. Recall that

1
Me,2=ﬁ Z E{©6,0),09,5),19(6,7),01
(4,7)EH.e

where Hy = {(i,7) : i,j # ¢ such that i < j}. For any £ € S, we have
2|Helpe2 > Z E{©i,0),09.,5),1P(€,5),0 -
1,JESCi#£]
By (S.G.56) and (S.G.57), due to s < p, it holds that

Y Elewnoveinaeenot 20’
i,jESC i)
Due to H, = p?, then
min > pTwWiy a3
min ey 2P Y
We obtain the lower bound of minges f1¢2. O

G.9.4. Lower bound of mingege p1po. Forany £ € S¢, we have

2He|pe2 > Z E{®@,0,096,5),19,4),0) -
i ESe iRl jHil

By (5.G.56) and (S5.G.57), due to s < p, it holds that
Z E{p.0,006.01205.0 20 0.
i,j€S AL, £
Due to H, = p?, then
: > Wi 3.3
?61‘1913 He2 P 7 XpY -

We obtain the lower bound of mingcgse fig2. O

G.10. Proofof Lemma7. Forany i, j, 0 € [p],let (i, ;0) =1 (i, ;) — E{ep1 (i, 7; £)}

and}/?z(id;@) = (i, ;0) — B{w2(i, j; )}, where 11 (i, j; €) = ©3i,0),196.5).09 (5.1 and
Ya(i, J; €)= ©(i,0),09(,),1P(¢,5),0- Write Fo ={Z; ¢, Zy j : (i,j) € He}. As we have shown
in Section G.1,

1

fleq — peg = T > [n(i g 0) — B (4, 5:0) | Fe}]
é (ivj)EHe
It;,:,l
1 .. -
Yo 2 B(G.550190) B0, 0}
! gyen.
Ie:,z
) 1 o .
He2 = fhe2 = THi| Z [W2(i, 55 €) — E{v2(i, j; €) | Fr}]
(ivj)EHe
Iy 01
1 .. -
] > E{n(i,5i0) | Fe} — E{yali,5;0}] -
(ivj)EHl

N

ey
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Identical to the arguments stated in Section G.1.1, we have

10g1/2 10g1/2
I = d I = .
(5.G.58) kg}?x}maXI okl = < p an kg%}rérggl 0i1] =Op 5
Define ¢(; jy.r = (i j),r — E{¢(j),-}- Same as (S.G.4), it holds that
(5.G.59) P-DP-2I2=2 > GuoiB{ewn L0}
.51 i, 1,7

Ip1,2(1)

+ ) Buoaben BLecols

0,51 177, 1,5 7L

N

I1,2(2)

(S.G.60) (p—1)(p—2) 122 =2 Z ©6,0,0B{0(,5),0 B{wg )1}
RATRR Y

Ip22(1)

+ > o0t oB{een) -
ig it g

N

Ip2,2(2)

In the sequel, we need the following lemmas whose proofs are given in Sections G.11 and
G.12, respectively.

LEMMA 8. Let (o, B) € M(7y, Ch) for some fixed constant Cy € (0,0.5). It holds that
E{ 1< v (w1 > 2ws) +pw1_2w2xg yI(w <2ws), ifi,j €S,
¥(i.),0
7) v, ifieSorjeS°,

2“2°JX 3yI(wy > 2ws) + I (w1 < 2ws), ifi,jES,

E{¢a,j)1} | I (wy > wo) +I(wy =wy), ifieS,jeSe,
“IXp LyI(wi > 0) +~4I(wy =0), ifi,jeSe.
LEMMA 9. Let (o, 8) € M(~,Cy) for some fixed constant C1 € (0,0.5). It holds that
Z nglsai;g Air S {spmm (Zwz—wr, w1 = 2w2)X§ +p1+w2_w1}X§ oA
max Aj g S {spminTen @y sy ploeny g2

1€S,0eS5°

max A, <{s min(2ws —w1, 0) —1_|_ 14wy —wy -2 2
max Aig S {sp X, TP e s

Wo —W1

max A
ipeSe i’ Bt S (sp

—1 1— —1.2
Xp TP )X, Y

G.10.1. Convergence rate of maxyes |fte,1 — fte1|. Notice that fip 1 —pup 1 =Ip1 1+ 1012
Given the convergence rate of maxycs|Iy 11| in (S.G.58), in order to establish the con-
vergence rate of maxyes|fig,1 — fu,1/, we only need to derive the convergence rate of
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maxyes |Iy1,2]. For Iy 1 2(1), we have

Inio() =Y Guoa [2 > E{¢(£,j),1}E{¢(i,j),0}:| = i die

i 9F£L jig#il i 9F£L
= Y Pupidict > bl
i€StiAl icse

For any ¢,/ € S, write
Aiy
max; ¢es: 0 Aip

Aipss=
It then holds that
> Gupadie= <.ZI£§¥X#AM> > bunidicss-
i€S: i prEe i€S: it

Due to A;, > 0 for any 7,/, we have max; scs 1[1,-74,5,5 < 1. Since {P(i )1 ies:ize is an
independent sequence, by Bernstein inequality,

P{ Z Guni1diess
1€S AL
for any 0 < u < O(s), which implies
> Gupidiess
1€S:iAL
Together with Lemma 9, we have
> i
€S AL
_ Op [{spmin(2w2—w1,w1—2w2)X;1 + p1+w2—w1 }X;27251/2 log1/2 S] )
Analogously, we also have
Z D014
IS
_ Op [{spmin(2w2—w1,0)X;1 + p1+w2—w1 }X;272p1/2 log1/2 S] )
Due to pmin(2w2 —w1, w1 —2wsz) < pmin(2w2 —w1,0) and s < p, then
max|I;,15(1)] = O [{spmin@uemen 00y 71 4 pliwsmenty 72,2)1/216g1/2 5]

> u} < exp(—Cs1u?)

max = 0,(s/%10g'/? s).

les

max
leS

max
LeS

It follows from Lemma 8 that max; j.i; i j2¢E{¢ j)0} < 7. Using the same arguments
in Section G.1.2 for deriving the convergence rate of maxycp, |lr,1,2(2)| there, we have
maxyes |1,1,2(2)| = Op(yplog s). Therefore, by (S.G.59), we have

I?eag‘( ‘[&1’2‘ — Op [72p—3/2{8pmin(2w2 —w170)X;1 + p1+UJ2—W1 }X;2 10g1/2 S]

+ Op(yp~tlogs).
Together with (S.G.58), it holds that
(8.G.61) max itgy — pe1| = Op [y2p =3/ {spmin(Zea=wi 0y ZL g pliwa=wiyy “216g1/2 ]

+Op(yplog s) + Op(p~ ' log'/?s).

We obtain the convergence rate of maxycs |fie,1 — fte1]- O
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G.10.2. Convergence rate of maxyes |fle,2— fte,2|. Notice that fipo—pupo = Ipo1+1r29.
Given the convergence rate of maxycs|ly2,1| in (S.G.58), in order to establish the con-
vergence rate of maxcs|fiz2 — fur,2/, we only need to derive the convergence rate of
maxyes |Iy2,2]. For Iy 2 2(1), we have

Ipo2(1) = Z @(i,@),oAz,HrZtﬁ(u),er,i-
ieStiAtl iese

Following the same arguments in Section G.10.1 for obtaining the convergence rate of
maxyes |I¢1,2(1)| there, it holds that

r?e%x |Ig’272(1)| _ Op [’7281/2{8pmin(2w2_w1’wl_zw2)x;1 +p1+w2_w1}X;2 log1/2 S]

(SG62) + Op [,72p1/2{8pmin(—w2,wg—wl)X;4 _|_p1—w1 }X;l 10g1/2 S] )
For I 5 2(2), it holds that
[L22(2)] < > D,0),0P(0,5),0BLP( )1}
i, jES i), 0,4l
D‘;l
+ Z Di,0),0P(0,5),0B{P(i5),1 }

i€8,jES i

Dy o

+ > @unobenoB{eu )
i€Se, jES: jAL

~
Dy3

+ D PunebenoB{e )
i,jESC i)

~~

Dy s

By Lemma 8, max; jes:itj,i,j20 E{@( )1} S P27 x; 2yl (w1 > 2wa) + I (wr < 2wy)
and max; jese: iz {91} S p‘“lxljll(wl > 0) + v (w1 = 0). Applying the same ar-
guments in Section G.1.2 for deriving the convergence rate of max ¢y [17,1,2(2)| there, we
have

max D1 =0, [fys{pzwr“lxg?’f(wl > 2ws) + I (w1 < 2ws)}logs],
€
max Dys= 0O, [yp{p_“’lxgll(wl >0) + (w1 =0)}logs].

Given ¢ € S, define dﬁj = E{p( )1} for any (i,j) € S x §¢ with i # ¢, and dﬁj =0
otherwise. Then
= | ma dz .
<i,je[}z§] w)

with de’ ;= df’ ;/max; jepy) dﬁ ;€ [0,1]. By the c}ecoupling i.nequalities of de la Pefia and Montgomery-Smith
(1995) and Theorem 3.3 of Giné, Latata and Zinn (2000), it holds that

p
> P00Pe 0

,j=1

p
> Bi0.095).00
ij=1

p
> Ga.0.085).00k
ij=1

(S.G.63)  Dyo=

max P
eS

> u) < exp(—Cul/?) + exp(—Cp~/3u?/3)
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+ eXp(—CS_1/2p_1/2’LL) + exp(—Cs™1p~tu?)
for any » > 0, which implies

max

p
nax > Gun 0P 0l ;| =O0p(s'/?p'?logs) .

ij=1

It follows from Lemma 8 that 0 < max; jc(y df] SpG 2y (wr > wa) + v (W = ws).
By (5.G.63), we have
I}laéx Dyo =0y [731/21)1/2{])“2 _WIX;2I(w1 > wo) + I(wy = ws)}log s] .
€
Analogously, we can also show
?%XDM =0, [781/2p1/2{pw2_wlxlj2](w1 >ws) + (w1 =ws)}logs] .
€
Therefore,

max 1Ip22(2)| = Oy hs{p2wz—w1X;3[(wl > 2wa) + I (w1 < 2ws)}log 5]

+ 0, [731/2p1/2{pw2_“1)<;2](w1 > ws) + (w1 =ws)}log s]

+0p [VP{p_WIX;II(Wl >0) 4 I(wy =0)}logs].
By (S.G.60) and (S.G.62), we have

Op [y2p~ 3/ {spmin(Cwmwaw)y o 4 plownyy Slogh/2 ]
[’ysp pAzmwr legf(wl > 2w9) + I (w1 < 2wsy)}log s]
[’ys 3/2{p‘“2 “IXp 2I(w1 > wo) + I(wy :wg)}logs]
+ 0, [’yp_ {p‘“’lxlj I(wy >0)+ I(w; =0)}log s} )
Together with (S.G.58), it holds that

[’sz 32 {gpmin(zwaiwamen)y 4 4 ploenity Slogl/2 )
[’ysp P2 _wlxlj I(wy > 2wsy) + I (wy < 2wq)}log s]
[’ys p 32 e X; 21 (w1 > wa) + I(wy = ws)}log s]
Op [yp~H{p™ X, (w1 > 0) + I (w1 = 0)} log 5]

+ Op(p_1 log!/?s).

We obtain the convergence rate of maxyes |fie.2 — fte,2|- O

G.10.3. Convergence rate of maxcgse |ftg,1 — ;1. Notice that figq — peq1 = Igq11 +
Iy12. Given the convergence rate of maxyese |Iy1,1] in (S.G.58), in order to establish the
convergence rate of maxycse |flg,1 — ft¢,1]/, we only need to derive the convergence rate of
maXyecgse [&1’2‘. For [&1’2(1), we have

Iio(1) = Gupidict D> Puoa

i€S i€SeiAl
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Following the same arguments in Section G.10.1 for obtaining the convergence rate of
maxyes |I¢1,2(1)| there, it holds that

?é%}cqlé,lﬂ(l”:Op[’7281/2{3pmin(_wz’wZ_UJl)Xp +p1 w1}X 110g1/2 ]

It follows from Lemma 8 that rnaxi,j:i;,,gj’i’j#E{gp(i,j),o} < 7. Applying the same argu-
ments in Section G.1.2 for deriving the convergence rate of maxc,| |Is,1,2(2)| there, we

have maxcs- |17,1,2(2)| = Op(yplog p). Therefore, by (S.G.59), we have
Igré%}fu&lvﬂ: [7231/2 2{Spmin(—wz,wz—wi)X;4+p1—w1}x 110g1/2 }

+O0u {02 (sp ™ x, T+ 1" )X, Hog! 2 ph + Oy (vp ! logp) -
Together with (S.G.58), we have

251/2),

a1 — p| = Op 171 /2p Hspm (o g plo L ogl/2 )

+ O {7273 (sp x4 pt )X, Hlog /2 p)

+ Oy (yp~togp) + Op(p~log'? p).

We obtain the convergence rate of maxycge-

fuon — pe- O

G.10.4. Convergence rate of maxycse |flg2 — fie,2|- Notice that figo — prg2 = Ip21 +
Iy 2.2. Given the convergence rate of maxese |Iy 21| in (S.G.58), in order to establish the
convergence rate of maxycse |flg,2 — ft¢,2|, we only need to derive the convergence rate of
maXyecgse [&2’2‘. For [&2’2(1), we have

Ie,2,2(1)=Z<ﬁ(i,e),er,i+ Z P(i0),040,i -
ies ieSeTitl

Following the same arguments in Section G.10.1 for obtaining the convergence rate of
maxyes |Iy1,2(1)] there, it holds that

max g 22(1)] = Op [’7281/2{81)““(2“2_““O)x;1+p1+“2 "Ix, 2log'/? p)

For I 52(2), by the same arguments for deriving the convergence rate of maxcs [/r22(2)]
in Section G.10.2, it holds that

max 1Ip22(2)| = Oy [fys{pmrwlxljgl(wl > 2ws) + I (w1 < 2ws)}log p]
+0Op [731/21)1/2{])“2 _wlxg2f(w1 > wo) + I(wy =ws)} logp]
+Op [vp{p™ X (w1 > 0) + I (w1 = 0)} log p] .
Therefore, by (S.G.60), we have
Igé%}c{ |Ig7272| — [’7281/2 2{Spmin(2w2—wi,0)X;1 + p1+w2—w1}X 2 10g1/2 ]
+ O {2732 (sp ™\, L+ ), Hlog! P p )
+ Op [vsp™ 2 {p™* ™ X, P I (w1 > 2ws) + I (wy < 2w2)}logp]
+ 0O, [731/2])_3/2 {p2™1 X52I(w1 > wo) + I(w) =w2)} logp]
+Op [ypH{p ™ X, (w1 > 0) + I (w1 =0)}ogp] .
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Together with (S.G.58), it holds that

IZHE%X |/M 2 — 1, 2| _ [’7281/2 2{spmin(2wg—w1,0)xgl +p1+w2—w1 }X 2 log1/2 ]

+ 0 {32 (sp L+ ), Hlog /2 p )

+ Oy [ysp_z{p%rwlx;?’l(wl > 2wsy) + I(wy < 2w9)} logp]
+0Op [’ysl/zp_?’/z{pw2_w1X;2I(w1 > wy) + I (w1 =ws)} log p]
+O0p [y~ H{p ¥ x;, H(wi > 0) + (w1 = 0)} log p]

+ 0y 108" p).

We obtain the convergence rate of maxycgse-

fle2 — phe2]. 0
G.11. Proof of Lemma 8. Notice thaty=1— a — ( and

Y
Elva,; =7 -P(X;,; =0)= ) AN
{0t =7 P(Xi;=0) 1+exp({+6;+06;)
Y
E{piit=7PXij=1)=

1+ exp(—€ —6; —0;)
Recall £ = —wlogp+ &1 and 6, = wo logp + é} for all ¢ € S, where w; € [0,2) and wy €
[0,1) such that 0 < wy —ws < 1, and |£F| Vmaxes |0, | = o(log p). Write x, = exp(—|¢F|V
maXxyes ’éz_‘)

For i,j € S, it holds that & + 6; —I—é = 2wy —wy)logp + & + é+ 9+ If wi > 2ws,
duetoexp(§+é +0;)>0and & —0; — 0, Alogp,thenE{cp” }<’yandE{4p(” 1} <
P9y 3. I wy = 2w, due to exp(€ + 0; + 6;) > 0 and exp(—¢ — 6; — 0;) > 0, then
E{gp(” 0}<’yandE{cp” 1} <. If wy < 2wo, due to € + 6; + 6 < log p and exp(—& —
0; —0;) > 0, then E{pu ot Sp 22t x, %y and E{p; 51} <.

Fori € Sand j € 8¢, 1th01dsthat£—|—9 —1—9 —(w2—w1)logp—|—£++9+ Due to wi > wo
and exp(&+0;+0;) >0, then E{p; j 0} <. If w1 = ws, dueto exp(—¢§ — 0;—0;) > 0, then
E{¢q,)1} <. I wi >wo, due to —& — 0; — 0; <logp, then E{¢; ), 1}<p‘“2_“’lx‘ .

For i, j € 8¢, it holds that & + 6; +9 :—wllogp+£+ Duet0w1>0andexp(£—|—9 +
6, ;) >0, then E{ey; 5 0}<7 Ifw1—0 due to exp(—¢ — 0; —0; )>0 then E{p; jy1} <.

If wy >0, due to —€ — 9 = logp, then E{p(; jy1} <p~ wlx 5. O
G.12. Proof of Lemma 9. Recall A;p =23, .. JE{p( )1 E{®( 5.0}
G.12.1. Upper bound of max; ¢cs:i+¢ Aip. Forany i,/ € S andi#/,
Aie=2 > Eoun i E{eanot +2 Y E{ew 1 YE{eu 0} -
JES: j#£i L jES°
By Lemma 8, due to s < p and x,, € (0, 1], it holds that

Z E{ o)1 E{p(i )0} S spminoe—wner=2ws)y =32
jeS jit
> Efowi B0t SPTTTG2,
jese
which implies

max A, ,<{s min(2w; —ws, w1 —2ws) _|_ 14ws—w;y 2.
ieesipe W {sp Xp TP 1
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We obtain the upper bound of max; s s.i-¢ Ai o O
G.12.2. Upper bound of max;cs, ¢cse Aip. ForanyieSand /eS¢,
Aipe=2 > Eoen i Bleanot+2 Y. E{ews YE{eu0}-
JES: j#i JESC:j#£L
By Lemma 8, due to s < p and x, € (0, 1], it holds that
Z E{ow@j),1  E{#i .0} S Spmin(_wz’w2_wl)x;;572 )
JES: j£i
> Efewia B{ewot SPTVG
JESe: j£L
which implies

min(—ws,ws—w1)

max_ Ao < {sp X5 P T G Y

i€S,0eSe
We obtain the upper bound of max;es rese Aj s O
G.12.3. Upper bound of max;cse ycs Aip. Foranyie S¢and /e S,
Ajp=2 Z E{ow),1  E{¢5),0} +2 Z E{owiE{eu.0}-
JES: j#L JESe: j#i
By Lemma 8, due to s < p and x, € (0, 1], it holds that
> E{ow YE{pp 0} S spminEemen Oy 8y
JES:j#L
Z E{o.j)1  E{eun0t SPT27% 2,
jESe: j#i
which implies

max A, <{s min(2ws —w1,0) —1_|_ 1+ws—w; —2 2'
A 0 S {sp Xp +P Xp -y

We obtain the upper bound of max;ese ges Ai - O
G.12.4. Upper bound of max; ycse.i+¢ Ai¢. Foranyi, /€ S®andi#/,
Aie=2) Elopj 1 }E{eanot+2 Y E{ewn i} E{e0}-
jes jeSe: j#il

By Lemma 8, due to s < p and x,, € (0, 1], it holds that

> E{ow 1 B{e 0t S 502,

jes

> E{ewn i B{eun0t SP TG,
JESe: j#iL

which implies

max A < s Wo —W1 —1 1—LU1 —1 2‘
Lolex e S (8P, AP TN Y

We obtain the upper bound of max; sese. ¢ Aj ¢ O
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