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SUMMARY

We show that, when the double bootstrap is used to improve performance of bootstrap meth-
ods for bias correction, techniques based on using a single double-bootstrap sample for each
single-bootstrap sample can produce third-order accuracy for much less computational expense
than is required by conventional double-bootstrap methods. However, this improved level of per-
formance is not available for the single double-bootstrap methods that have been suggested to
construct confidence intervals or distribution estimators.

Some key words: Bias correction; Bias estimation; Confidence intervals; Distribution estimation; Edgeworth expan-
sion; Second-order correctness; Third-order correctness.

1. INTRODUCTION

Double-bootstrap methods that use a single simulation at the second bootstrap level have been
studied in at least one context for more than a decade. An early contribution was made by White
(2000), although in the setting of diagnosing the overuse of a dataset, rather than speeding up
Monte Carlo simulation for general applications of the bootstrap. Davidson & Mackinnon (2002),
the same authors in a number of subsequent papers accessible via an unpublished 2006 tech-
nical report available from the second author, and Davidson & Mackinnon (2007) introduced
the concept independently and explored its applications. Giacomini et al. (2013) christened the
technique the warp-speed double-bootstrap method, nomenclature that we shall use here, too.
Giacomini et al. (2013) demonstrated that this approach is asymptotically consistent. All this
work is for distribution estimation and its application to constructing confidence intervals and
hypothesis tests.

In statistics the conventional double bootstrap is used in two main classes of problems: (i) to
improve the effectiveness of bias correction and (ii) to improve the coverage accuracy of confi-
dence intervals. In problem (i), an application of the double bootstrap reduces the order of mag-
nitude of bias by the factor O(n−1), and in problem (ii) it reduces coverage error by the factor
O(n−1/2) for one-sided confidence intervals, and O(n−1) for two-sided intervals. In the setting
of problem (i), it is not clear whether there exists a version of warp-speed methodology for bias
correction, and whether, should it exist, it successfully reduces the order of magnitude of bias.
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204 J. CHANG AND P. HALL

Call these questions 1 and 2, respectively. In problem (ii), it is unclear whether the warp-speed
double bootstrap is as effective as the conventional double bootstrap, in the sense of offering
the above levels of improved accuracy; we shall refer to this as question 3. In the present paper
we show that the answers to questions 1 and 2 are positive, but that the answer to question 3
is negative. In particular, the warp-speed bootstrap does not reduce the order of magnitude of
coverage error of a confidence interval.

There is an extensive literature on conventional double-bootstrap methods, particularly in the
context of improving the coverage accuracy of single-bootstrap methods. The first mention of the
double bootstrap in this setting apparently was by Hall (1986), followed quickly by contributions
of Beran (1987, 1988); see also Hall & Martin (1988). The approach suggested by Hall (1992,
Ch. 3) allows general multiple bootstrap methods to be developed together, so that different set-
tings do not require separate treatment. However, details of properties of the technique seem to
be very problem-specific. Efron (1983) was the first to use the double bootstrap in any setting;
in that paper his work was in the context of estimating the error rate of classifiers. Research on
optimizing the trade-off between the numbers of simulations in the first and second stages of the
conventional double bootstrap, in the context of distribution estimation and constructing confi-
dence intervals, includes that of Booth & Hall (1994), Booth & Presnell (1998) and Lee & Young
(1999).

It has become conventional to assess performance of the bootstrap in terms of Edgeworth
expansions, not least because that approach enables theoretical properties to be developed in the
very broad context addressed by Bhattacharya & Ghosh (1978). The resulting approximations
are valid, in absolute rather than relative terms, uniformly in the tails. An alternative approach,
based on large deviation probabilities, is valid in relative terms; see, e.g., Hall (1990). However,
it requires either more stringent assumptions or specialized methods that, at least at present, are
not available in the context of the models used by Bhattacharya & Ghosh (1978). In the setting
of absolute rather than relative accuracy, arbitrarily far out into the tails, the results in this paper
take the result of consistency, demonstrated by Giacomini et al. (2013), much further.

2. MODEL AND METHODOLOGY FOR BIAS CORRECTION

2·1. Model

Let θ = f (μ) be a parameter expressible as a known function, f , of a p-variate mean, μ, and
let X̄ denote an unbiased estimator of μ = (μ1, . . . , μp)

T. Our estimator of θ is the same function
of a sample mean, X̄ :

θ̂ = f (X̄). (1)

The smooth function f maps a point x in p-variate Euclidean space to a point on the real line.
We do not insist that X̄ be a mean of n, say, independent and identically distributed random
p-vectors, since it might be the case that X̄ = (X̄1, . . . , X̄ p)

T, with

X̄ j = 1

n j

n j∑
i=1

X ji ,

where X ji , for i = 1, . . . , n j , are independent for each i , E(X ji ) = μ j for each j , and the n j are
not all equal. Nevertheless, in mathematical terms we shall assume that the n j are all functions
of an integer parameter n, and that each n j � n; that is, each ratio n j/n is bounded away from
zero and infinity as n → ∞.
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Double-bootstrap methods 205

These issues are related to dependence relationships among the random variables X ji , which
should be reflected in resampling methodology. In our theoretical work we shall suppose the
following condition.

Condition 1. Either (i) each n j = n and the vectors (X1i , . . . , X pi )
T, for i � 1, are indepen-

dent and identically distributed; or (ii) the X ji are totally independent, for i = 1, . . . , n j and
j = 1, . . . , p, and in this case, for each j ∈ {1, . . . , p} the variables X j1, X j2, . . . are identically
distributed, and n j � n.

Conditions 1(i) and (ii) can be generalized, for example to hybrid cases where, for pos-
itive integers p1, . . . , pr that satisfy

∑r
j=1 p j = p, and defining q j = ∑ j

k=1 pk , the vectors
Vji = (Xq j +1,i , . . . , Xq j+1i )

T, for j = 0, . . . , r − 1 and i � 1, are completely independent, and
for each j the vectors Vji , for i � 1, are identically distributed. Bootstrap methods that reflect
these properties can be constructed readily, and theory providing authoritative support in this
setting can be developed, but for the sake of brevity, in our theoretical work we shall restrict
attention to cases where Condition 1 holds.

2·2. Bias correction

Bias-corrected estimators of θ , based on the conventional bootstrap and the double bootstrap,
respectively, are given by

θ̂bc = 2 θ̂ − E(θ̂∗ |X ), θ̂bcc = 3 θ̂ − 3 E(θ̂∗ |X ) + E(θ̂∗∗ |X ). (2)

Here X = {X ji : i = 1, . . . , n j , j = 1, . . . , p} denotes the original dataset, θ̂∗ is the version of
θ̂ computed from a resample X ∗ drawn randomly, with replacement, from X , in a manner that
reflects appropriately the dependence structure, and θ̂∗∗ is the version of θ̂ computed from X ∗∗,
which in turn is drawn randomly with replacement from X ∗, again reflecting dependence.

Monte Carlo approximations to the quantities θ̂bc and θ̂bcc in (2) are given respectively by

θ̃bc = 2 θ̂ − 1

B

B∑
b=1

θ̂∗
b , θ̃bcc = 3 θ̂ − 3

B

B∑
b=1

θ̂∗
b + 1

BC

B∑
b=1

C∑
c=1

θ̂∗∗
bc , (3)

where θ̂∗
b denotes the bth out of B independent and identically distributed, conditional on X , ver-

sions of θ̂∗, computed from respective resamples X ∗
b drawn by sampling randomly, with replace-

ment, from the data in X , and θ̂∗∗
bc is the cth out of C independent and identically distributed,

conditional on X and X ∗, versions of θ̂∗∗, and is computed from a resample X ∗∗
bc drawn by sam-

pling randomly, with replacement, from X ∗
b .

2·3. Bootstrap algorithms

Reflecting the model at (1), we can express θ̂∗
b and θ̂∗∗

bc in (3) as θ̂∗
b = f (X̄∗

b) and θ̂∗∗
bc = f (X̄∗∗

bc ),
where X̄∗

b = (X̄∗
b1, . . . , X̄∗

bp)
T, X̄∗∗

bc = (X̄∗∗
bc1, . . . , X̄∗∗

bcp)
T, X̄∗

bj denotes the mean of data in the

resample X ∗
bj = {X∗

bj1, . . . , X∗
bjn j

}, X̄∗∗
bcj is the mean of data in the re-resample X ∗∗

bcj = {X∗∗
bcj1,

. . . , X∗∗
bcjn j

} drawn by sampling with replacement from X ∗
bj , the resampling operations at the

first bootstrap level are undertaken by resampling the vectors Xi = (X1i , . . . , X pi )
T randomly,

with replacement, if Condition 1(i) holds, or by resampling the X ji randomly and completely
independently, conditional on X and with replacement, if Condition 1(ii) obtains, and resampling
at the second bootstrap level is undertaken analogously.

D
ow

nloaded from
 https://academ

ic.oup.com
/biom

et/article-abstract/102/1/203/229284 by Southw
est U

niversity of Finance and Econom
ics user on 08 N

ovem
ber 2018



206 J. CHANG AND P. HALL

2·4. Main conclusions

Theorem 1 shows that if C → ∞, no matter how slowly, as n and B diverge, then the asymp-
totic distribution of the Monte Carlo simulation error incurred when constructing θ̃bcc at (3) is
the same as it would be if C = ∞. In particular, not only is the error of order (nB)−1/2, the large-
sample limiting distribution of the relevant asymptotically normal random variable, which has
standard deviation proportional to (nB)−1/2, and which describes in relative detail the accuracy
of Monte Carlo bootstrap simulation, is identical to the limiting distribution that would arise if
C = ∞.

Moreover, if C is held fixed then the order of magnitude, (nB)−1/2, remains unchanged, but
the standard deviation of the large-sample limiting distribution referred to above changes by a
constant factor. This result is critical. It demonstrates the relatively small gains that are to be
achieved by taking C to be large, and argues in favour of taking C = 1, for example. This is
the analogue, for bias correction, of the warp-speed bootstrap for distribution estimation when
constructing confidence intervals.

Therefore the order of magnitude of Monte Carlo simulation error in θ̃bcc is unchanged even
if C is held fixed. Incidentally, the order of magnitude, (nB)−1/2, should be compared with that
of the uncorrected bias that remains after applying the bias correction that leads to θ̃bcc; it is n−3.
Therefore, unless B is of order n5 or larger, for the regular bootstrap, the orders of magnitude
involving B, discussed above, dominate the error in the bias correction.

3. MODEL AND METHODOLOGY FOR CONSTRUCTING CONFIDENCE INTERVALS

3·1. Model

As in § 2·1 we shall assume that the parameter θ can be represented as f (μ), where the function
f : IRp → IR is known, and μ = E(X) is an unknown p-vector of parameters, estimated by X̄ =
n−1 ∑n

i=1 Xi where X = {X1, . . . , Xn} is a random sample of data vectors. Here and below we
use Condition 1(i) for the data, but only minor modifications are needed if Condition 1(ii) is
employed instead.

In such cases, provided that f is sufficiently smooth and θ̂ is given by (1), the asymptotic
variance, σ 2

n , of θ̂ is estimated root-n consistently by n−1 σ̂ 2, where

σ̂ 2 =
p∑

j1=1

p∑
j2=1

f j1 j2(X̄)
1

n

n∑
i=1

(X j1i − X̄ j1)(X j2i − X̄ j2).

Here, given a p-vector x = (x1, . . . , x p)
T, and integers j1, . . . , jr between 1 and p; and assuming

that f has r well-defined derivatives with respect to each variable; we put

f j1... jr (x) = (∂/∂x j1) · · · (∂/∂x jr ) f (x).

The above definitions of θ̂ and σ̂ are used in (4) below.

3·2. Bootstrap algorithms

Let R, referred to as the root by Giacomini et al. (2013), be given by either of the formulae

R = n1/2 (θ̂ − θ), R = n1/2 (θ̂ − θ)/σ̂ . (4)

Here θ̂ and σ̂ are estimators of parameters θ and σ computed from the random sample X , and σ 2

denotes the asymptotic variance of n1/2 θ̂ . The warp-speed bootstrap of Giacomini et al. (2013),
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Double-bootstrap methods 207

closely related to suggestions by White (2000) and Davidson & Mackinnon (2002, 2007), can be
defined as follows.

As in § 2, letX ∗
b , for b = 1, . . . , B, be drawn randomly, with replacement, fromX , and be inde-

pendent conditional on X . Draw X ∗∗
b , denoting a single double-bootstrap resample, by sampling

randomly, with replacement, from X ∗
b for b = 1, . . . , B, in such a manner that these re-resamples

are independent, conditional on X and X ∗
1 , . . . ,X ∗

B . In the context of § 2, X ∗∗
b would be one of

the resamplesX ∗∗
b1 , . . . ,X ∗∗

bC that were drawn by resampling fromX ∗
b , but on the present occasion

we require only one of these resamples.
Let θ̂∗

b and θ̂∗∗
b denote the versions of θ̂ computed from X ∗

b and X ∗∗
b , respectively, instead of

X , and write σ̂ ∗
b and σ̂ ∗∗

b for the corresponding versions of σ̂ . If R is given by one of the formulae
at (4), define

R∗
b = n1/2 (θ̂∗

b − θ̂ ), R∗
b = n1/2 (θ̂∗

b − θ̂ )/σ̂ ∗
b , (5)

R∗∗
b = n1/2 (θ̂∗∗

b − θ̂∗
b ), R∗∗

b = n1/2 (θ̂∗∗
b − θ̂∗

b )/σ̂ ∗∗
b , (6)

in the respective cases, and put

F̂∗
B(x) = 1

B

B∑
b=1

I (R∗
b � x), F̃∗

B(x) = 1

B

B∑
b=1

I (R∗∗
b � x). (7)

Then F̂∗
B is the conventional single-bootstrap Monte Carlo approximation to the distribution func-

tion F of R, and the limit of F̂∗
B , as B → ∞, is the conventional single-bootstrap approximation

to F . The function F̃∗
B is a short-cut, warp-speed, double-bootstrap approximation to F .

Given a nominal coverage level α ∈ (0, 1) of a confidence interval, define x = x̂∗
α to be the

solution of the equation F̃∗
B(x) = α, and similarly let x̂α be the solution of F̂∗

B(x) = α. If R is
given by either of the expressions in (4), consider the respective confidence intervals,

I∗
bα = (θ̂∗

b − n−1/2 x̂∗
α, ∞), I∗

bα = (θ̂∗
b − n−1/2 σ̂ ∗

b x̂∗
α, ∞), (8)

which are bootstrap versions of the respective intervals

Iα = (θ̂ − n−1/2 x̂α, ∞), Iα = (θ̂ − n−1/2 σ̂ x̂α, ∞).

In either case, our estimator of the probability pα that the interval Iα covers θ is given by

p̂Bα = 1

B

B∑
b=1

I (θ̂ ∈ I∗
bα).

We take the final interval to be I
β̂Bα

, where β = β̂Bα denotes the solution of p̂Bβ = α.
Earlier warp-speed bootstrap methodology is a little ambiguous in the percentile-t setting,

i.e., in the context of the second definition in each of (4)–(6), where the technique is not com-
pletely clear from the algorithms of White (2000), Davidson & Mackinnon (2002) and Giacomini
et al. (2013, pp. 570–1). In particular it is unclear from Giacomini et al. (2013) when, or whether,
the estimator σ̂ should be replaced by its single- or double-bootstrap forms, σ̂ ∗ and σ̂ ∗∗, for
example in (5)–(8). The choices we have made are appropriate, however, and in particular the
algorithm would not be second-order accurate, or third-order accurate in the case of the double
bootstrap, if we were to use simply σ̂ in those instances.
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208 J. CHANG AND P. HALL

In § 5·2 we shall show that in the percentile-t case, using the case B = ∞ as a benchmark,
the approach suggested above produces quantile estimators that are identical to those obtained
using the standard single-bootstrap method, up to an error of order n−3/2. In particular, they
do not reduce the O(n−1) coverage error of single-bootstrap methods. Similar results hold for
percentile-method bootstrap procedures.

4. NUMERICAL PROPERTIES

4·1. Bias correction

Here we report the results of a simulation study comparing the performances of six different
bootstrap methods for bias correction: the single bootstrap, the conventional double bootstrap,
and the suggested alternative method involving only C = 1, 2, 5 or 10 double-bootstrap replica-
tions. The data were of two types, either the exponential distribution, with density 2−1 e−x/2 on
the positive half-line, or the log-normal distribution. These two distributions both have nonzero
skewness and nonzero kurtosis, making them challenging for the bootstrap. The parameter of
interest also took two forms, both of them nonlinear: either θ = f (μ) = μ3 or θ = sin(μ), where
μ was the population mean. In such cases there is a term with order n−2 in the bias expansion,
which cannot be eliminated by the single bootstrap but can be removed by the double bootstrap.
This is reflected in our simulation results, which show that the double bootstrap provides better
bias correction than the single bootstrap method.

Sample size, n, was chosen in steps of 20 between 20 and 80; the number of simulations, B, in
the first bootstrap step was set equal to n2, for each of the bootstrap methods; and the number of
simulations, C , for the second bootstrap step in the conventional double bootstrap was taken to be
the integer part of 10 B1/2, which we write as �10 B1/2	. The choice of B1/2 here was suggested
by Booth & Hall (1994) in the context of confidence intervals, and gives an expression for C that
is orders of magnitude larger than obtained using relatively small, fixed C . For example, when
n = 20 the value of C = �10 B1/2	 is between 20 and 200 times the values C = 1, 2, 5 or 10 used
to simulate the alternative approach to double-bootstrap methods; when n = 80 the respective
factors are 80 to 800.

From equation (3),

1

B

B∑
b=1

θ̂∗
b − θ̂ ,

3

B

B∑
b=1

θ̂∗
b − 1

BC

B∑
b=1

C∑
c=1

θ̂∗∗
bc − 2 θ̂ ,

provide the estimates of the true bias of θ̂ , i.e., E(θ̂) − θ , via the single and double bootstraps,
respectively. Empirical approximations to bias, computed by averaging over the results of 5000
Monte Carlo trials in each case, are reported in Tables 1–2 in the Supplementary Material, and
the ratios of such approximations and true bias are graphed in Fig. 1. For the values of B used in
our analysis, there is little to choose between performance when using C = 1 and C = �10 B1/2	.

4·2. Confidence intervals

In this section we illustrate the coverage performance of bootstrap confidence intervals, with
nominal coverage 0·9, for the population means of the two distributions considered in § 4·1, i.e.,
the exponential and log-normal distributions. Sample size n was taken equal to 20 and 40 in each
case; B was increased from 200 to 700 in steps of 100, as indicated on the horizontal axis of each
panel; and one-sided and two-sided equal-tailed bootstrap confidence intervals were considered,
each using either the percentile or percentile-t bootstrap, implemented via the single bootstrap,
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Fig. 1. Performance of bootstrap methods for bias correction. First and second rows show results for the
exponential distribution, and the log-normal distribution, respectively; left- and right-hand panels show results
for θ = μ3 and θ = sin(μ), respectively. In each panel the graphs represent single-bootstrap method (− � −)
and conventional double-bootstrap methods with C = 1 (· · · + · · · ), C = 2 (· · · ◦ · · · ), C = 5 (· · · × · · · ), C =

10 (· · · ♦ · · · ) and C = �10 B1/2	 (· · · � · · · ), respectively.

the conventional double bootstrap, C = �10 B1/2	, and the warp-speed bootstrap, i.e., the double
bootstrap with C = 1. This choice of C was suggested by Lee & Young (1999). To provide a
perspective different from that in § 4·1, in the present section we graph coverage as a function of
B for fixed n, rather than as a function of n for fixed B as in § 4·1. Results in the two settings
can of course be expressed in the same way; the conclusions do not alter.

Results for sample size n = 20, with each point on each graph based on 5000 Monte
Carlo simulations, are presented in Fig. 2. For each confidence interval type, the conventional
double-bootstrap method gives greater coverage accuracy than the single-bootstrap and warp-
speed bootstrap. Results for n = 40 are similar, and are reported in the Supplementary Material.

5. THEORETICAL PROPERTIES

5·1. Bias correction

Our main regularity condition, in addition to the model assumptions (1) and Condition 1, is
as follows.
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Fig. 2. Performance of bootstrap methods for confidence intervals when n = 20. First and second rows show
results for the exponential distribution, and the log-normal distribution, respectively; left- and right-hand pan-
els show results for one-sided and two-sided equal-tailed confidence intervals, respectively. In each panel
the graphs represent single-bootstrap percentile (− � −), single-bootstrap percentile-t (−· � ·−), conventional
double-bootstrap percentile (− � −), conventional double-bootstrap percentile-t (−· � ·−), warp-speed per-

centile (−♦−) and warp-speed percentile-t methods (−·♦·−).

Condition 2. (i) The function f (x) is differentiable six times with respect to any combination
of the p components of x ; and those derivatives, as well as f itself, are uniformly bounded; and
(ii) the data X ji have at least six finite moments, and E(X6

j i ) is bounded uniformly in i and j .

Condition 2 can be generalized, but, for example, if we relax significantly the condition of
boundedness of f and its derivatives, in Condition 2(i), then we need to strengthen the assumption
about tails of the distributions of the X ji , in Condition 2(ii). We shall define

τ 2 = E

[{ p∑
j=1

(X j1 − μ j ) f j (μ)

}2]
.

In Theorem 1, we decompose the bias-corrected estimators θ̃bc, based on the single bootstrap,
and θ̃bcc, based on the double bootstrap, as follows:

θ̃bc = U bc + V bc, θ̃bcc = U bcc + V bcc. (9)
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Double-bootstrap methods 211

Here U bc and U bcc are the ideal versions of θ̃bc and and θ̃bcc, respectively, that we would obtain
if we were to do an infinite number of simulations, i.e., if we were to take B = C = ∞; and V bc

and V bcc denote error terms arising from doing only a finite number of Monte Carlo simulations.
Part (d) of Theorem 1 shows that the error terms V bc in the case of the single bootstrap, and V bcc

for the double bootstrap, both equal Op{(nB)−1/2}, and that this is the exact order, regardless
of the selection of C in the second bootstrap stage. Although the Monte Carlo error terms in the
single bootstrap and the double bootstrap share the same convergence rate, equations (10) show
that the double bootstrap provides a higher degree of accuracy, in terms of bias correction, than
the single bootstrap if we take B = C = ∞. Part (d) also implies that if B is sufficiently large,
or more precisely if n5 = O(B), then the Monte Carlo error is of the same order as, or an order
smaller than, the deterministic remainders in (10). These are the main theoretical findings of
Theorem 1.

THEOREM 1. Assume that the data are generated according to either of the models at Condi-
tion 1, that Condition 2 holds, and that B = B(n) → ∞ as n → ∞. Then: (a) equations (9) hold,
where U bc and U bcc are functions of X alone, and in particular do not involve X ∗ or X ∗∗, and
satisfy

E(U bc) = θ + O(n−2), E(U bcc) = θ + O(n−3) ; (10)

and V bc and V bcc are functions of bothX andX ∗, and also ofX ∗∗, in the case of V bcc, and satisfy
E(V bc |X ) = E(V bcc |X ) = 0. (b) Both U bc and U bcc equal θ̂ + Op(n−1), and both satisfy the
same central limit theorem as θ̂ . (c) In particular, both U bc and U bcc are asymptotically normally
distributed with mean θ and a variance, σ 2

n say, which has the property that n σ 2
n is bounded as

n → ∞. (d) Conditional on X , V bc and V bcc are asymptotically normally distributed with zero
means and variances of size (nB)−1, and if C = C(n) → ∞ as n → ∞ then the ratio of the vari-
ances converges to 1 as n diverges. In the case of Condition 1(i) the asymptotic variances of V bc

and V bcc, both conditional on X and unconditionally, are (Bn)−1 τ 2 and (4 + C−1) (Bn)−1 τ 2,
respectively.

In connection with part (d) it can be shown that, if C diverges, no matter how slowly, as n
increases, the asymptotic distribution of the error is the same as it would be if C = ∞. If σn is as
in part (c) then, under Condition 1(i), there exists a positive constant c such that n σ 2

n = c + o(1)

as n → ∞. However, this is not necessarily correct under Condition 1(ii), since in that setting we
do not require the ratios n j/n to converge. In the context of Condition 1(i), formulae for U bc and
U bcc are given in the Supplementary Material.

The orders of magnitude of the remainders in (10) are exact when skewness and kurtosis are
nonzero. It follows from part (b) of Theorem 1 that, in the case B = C = ∞, θ̃bc and θ̃bcc satisfy
identical central limit theorems, and in particular both have the same asymptotic variances.

5·2. Distribution estimation and confidence interval construction

We shall assume that X , which represents a generic p-vector Xi = (X1i , . . . , X pi )
T, where

i = 1, . . . , n and Condition 1(i) holds, satisfies the following multivariate version of Cramér’s
continuity condition (Hall, 1992):

lim sup
‖t‖→∞

∣∣E{exp(i tT X)}∣∣ < 1. (11)

On this occasion, i denotes
√−1. For brevity we shall treat in detail only the percentile-t case,

evidenced by the second formula in each of (4)–(6), and discuss the percentile method briefly
below Theorem 2.
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Let 	 and φ denote the standard normal distribution and density functions, respectively.
Assume that an unknown scalar parameter θ can be written as θ = f (μ), where μ = E(X), and
that our estimator of θ is θ̂ = f (X̄), as at (1), where X̄ = n−1 ∑n

i=1 Xi . Methods of Bhattacharya
& Ghosh (1978) can be used to prove that, under conventional assumptions such as those in
Theorem 2 below,

G(x) ≡ pr{n1/2 (θ̂ − θ)/σ̂ � x}

= 	(x) +
3∑

j=1

n− j/2 Q j (x) φ(x) + n−2 An(x), (12)

where Q j is a polynomial of degree 3 j − 1, and is an even or odd function according as j is odd
or even, respectively; and the remainder An(x) satisfies

sup
n�1

sup
−∞<x<∞

|An(x)| < ∞.

The coefficients of Q j are rational polynomials in moments of the distribution of X .
For simplicity in this section we take B = ∞, which is the ideal case where there is no error

generated from Monte Carlo approximation. Inverting the Edgeworth expansion at (12) we obtain
a Cornish–Fisher expansion:

xα ≡ G−1(α) = zα + n−1/2 Qcf
1 (zα) + n−1 Qcf

2 (zα) + n−3/2 Qcf
3 (zα) + O(n−2), (13)

where zα = 	−1(α), the functions Qcf
1 , Qcf

2 and Qcf
3 are Cornish–Fisher polynomials and for

example are given by Qcf
1 = −Q1 and Qcf

2 (x) = Q1(x) Q′
1(x) − 1

2 x Q1(x)2 − Q2(x), and the
remainder in (13) is of the stated order, uniformly in α ∈ [a1, α2], whenever 0 < α1 < α2 < 1.

The conventional percentile-t bootstrap estimator of G is Ĝ, defined by

Ĝ(x) = pr{n1/2 (θ̂∗ − θ̂ )/σ̂ ∗ � x |X }
and satisfying an empirical version of the Edgeworth expansion at (13):

x̂α ≡ Ĝ−1(α) = zα + n−1/2 Q̂cf
1 (zα) + n−1 Q̂cf

2 (zα) + n−3/2 Q̂cf
3 (zα) + Op(n

−2), (14)

where Q̂cf
k is derived from empirical Edgeworth polynomials Q̂1, . . . , Q̂k in the standard way,

discussed above (13); and Q̂k is derived from the Edgeworth polynomial, Qk , on replacing
moments of the distribution of X , appearing in coefficients of Qk , by the same respective
moments of the distribution of X∗, conditional on X , with X∗ drawn by sampling, randomly
and with replacement, from X . The coefficients of Q̂k depend on moments of X∗, conditional
on X , through rational polynomials in those conditional moments.

If we knew the sampling distribution of X , and wished to construct an upper one-sided
confidence interval for θ , we would employ the Studentized confidence interval (θ̂ −
n−1/2 σ̂ xα, ∞), where xα is as at (13); if we were to use the percentile-t bootstrap method, it
would be (θ̂ − n−1/2 σ̂ x̂α, ∞), where x̂α is as at (14); and if we were to employ the warp-speed
bootstrap method, it would be (θ̂ − n−1/2 σ̂ x̂

β̂α
, ∞), as discussed in § 3·2, where β̂α denotes the

limit, as B → ∞, of the quantity β̂Bα introduced there. However, we shall show in Theorem 2
that x̂

β̂α
= x̂α + Op(n−3/2), and so the endpoints of standard percentile-t and warp-speed boot-

strap confidence intervals differ only to order n−3/2. This signals that conventional arguments,
based on Edgeworth expansions, can be used to prove that the standard percentile-t confidence
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interval, and its warp-speed bootstrap variant, have identical coverage error up to and including
terms of order n−1, and of course that can be done under the assumptions of Theorem 2. Since the
coverage error of the percentile-t interval is genuinely of order n−1 (Hall, 1986), then it follows
that the warp-speed bootstrap does not improve on that accuracy.

THEOREM 2. Assume that Condition 1(i) applies; that the function f , in the definition
θ = f (μ), has five bounded derivatives; and that (11) holds, E(‖X‖K ) < ∞ for sufficiently large
K > 0, and B = ∞. Then x̂

β̂α
= x̂α + Op(n−3/2).

The appropriate number of moments that should be assumed for general Edgeworth or
Cornish–Fisher expansions, even in relatively simple, non-bootstrap cases, is awkward to deter-
mine. For example, the argument of Bhattacharya & Ghosh (1978) requires at least six moments
in the case of the Studentized mean, whereas it is known that three moments are sufficient; see,
e.g., Hall (1987). Even if we were to develop, in full detail, a proof of Theorem 2 based on the
methods of Bhattacharya & Ghosh (1978), the number of moments we would need to assume
would be unduly generous, and instead refer to the number as simply K . We choose not to pro-
vide such a detailed development here. However, the number of derivatives is relatively easy to
address, and the theorem provides detail in that respect.

Let
F̃∗(x) = pr

{
n1/2(θ̂∗∗ − θ̂∗)/σ̂ ∗∗ � x

∣∣X}
,

which is the limit of F̃∗
B(x), defined in (7), as B → ∞. Then x̂

β̂α
is the solution of F̃∗(x) = α.

Our focus on the case B = ∞ deserves comment. In the early days of the bootstrap, B = ∞
was seen as the statistical bootstrap method, and the case of finite B was interpreted as a Monte
Carlo approximation to the bootstrap. Indeed, taking B < ∞ was viewed more as an issue to be
addressed in computational or numerical terms, rather than statistical ones. Reflecting this, for
about eight years from the mid 1980s considerable effort was spent developing efficient compu-
tational methods for undertaking bootstrap resampling. However, by the early 1990s computers
had become so fast that this area of research had largely disappeared. This remains the case today;
taking B in the thousands, without using numerical devices to increase simulation efficiency, is
now the rule rather than the exception. The difference between such large values of B, and using
the mathematical ideal value B = ∞, is particularly small.
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SUPPLEMENTARY MATERIAL

Supplementary material available at Biometrika online includes theoretical proofs of
Theorems 1 and 2, and additional simulation results for § § 4·1 and 4·2.
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