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ABSTRACT
Changes in precipitation directly impact river runoff volume, subse-
quently influencing food production, and the security of downstream
urban areas. In this study, we introduce a random velocity field (RVF)
capable of performing multi-step predictions while providing inter-
pretable insights into precipitation variations. The RVF leverages the
gradient of a Gaussian random field to learn spatiotemporal velocity
patterns and employs a predictive process to reduce dimensionality
and enable multi-step forecasting. Bayesian parameter estimation is
obtained using the Markov Chain Monte Carlo (MCMC) method. Our
analysis reveals a noticeable shifting trend in annual precipitation based
on diverse real datasets. This trend serves as a valuable foundation for
further exploration of urban flood control and agricultural development
strategies.
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1. Introduction

Precipitation observations are fundamental in water resource management, exerting sub-
stantial influence over industrial and agricultural production, water resource development,
river flood control, and project management. The study of precipitation has garnered notable
attention in recent years, with a central focus on three key facets: unraveling the spatiotem-
poral characteristics of extreme precipitation events, elucidating the driving factors behind
precipitation patterns, and studying the ramifications of high-intensity precipitation.

Research by Zhang, Hogg, and Éva (2001) comprehensively analyzed extreme precipitation
events in Canada from 1900 to 1998, providing valuable insights into the spatiotemporal
characteristics of these events. Sebille, Fougèeres, and Mercadier (2017) adopted a different
approach by selecting five spatial models and incorporating Bayesian and frequentist concepts
to analyze real precipitation datasets in central and eastern France. Their comparative study
highlighted the distinctive properties of each model and provided valuable insights into
model selection for specific risk types. Richards, Tawn, and Brown (2023) further contributed
to our understanding of extreme precipitation by employing a mixed model to estimate
spatially aggregated precipitation at different scales jointly. They emphasized the importance
of capturing aggregated precipitation across river catchments, highlighting the significance
of accounting for precipitation-induced variations in flood risk assessments. Majumder and
Reich (2023) similarly underscored the significance of precipitation in contributing to the
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spatial and temporal variability of extreme flows, which directly impacts current and future
flood risk assessments. Their work emphasized the need to consider precipitation-induced
variations when evaluating flood risk.

Understanding the drivers behind precipitation patterns is vital for accurate prediction and
preparedness for extreme events. Researchers have scrutinized various aspects of precipita-
tion. For example, Marques, Klein, and Kneib (2020) explored the influence of topography
and the non stationarity of precipitation phenomena, highlighting the role of factors like
wind in causing directional dependence. Rui et al. (2020b) identified driving factors affecting
precipitation patterns in the Tianshan region of China, while Ribas, Olcina, and Sauri (2020)
conducted a comprehensive study on the impact of high-intensity precipitation on flood
vulnerability in the Mediterranean region of Spain, advocating for a holistic vulnerability
analysis method. Mahbod and Rafiee (2021) analyzed trends in extreme precipitation events
in Iran using the percentile index. In addition, Fischer, Rust, and Ulbrich (2019) conducted a
study that emphasized the ramifications of extreme precipitation events. These events pose
a threat in two main ways: directly, in the form of phenomena like hail, freezing rain, or
flash floods, and indirectly, through processes like increased erosion, mudslides, or river
flooding. The seasonality of extreme precipitation is significant, as seasonal cycles of extreme
precipitation can profoundly impact crop yields, especially during the vulnerable early stages
of the growing season. Their study provided detailed insights by offering monthly resolved
return levels for gauged and ungauged sites. They achieved this by modeling spatial and
seasonal precipitation extremes in the Berlin-Brandenburg region of Germany. This research
contributes valuable information for understanding the region’s dynamics and consequences
of extreme precipitation events.

However, more than focusing solely on precipitation intensity is required. Climate change,
particularly rising temperatures, has led to variations in precipitation trends across regions,
with some experiencing increasing or decreasing precipitation over the years (Villarini,
Smith, and Napolitano 2010; Rusticucci et al. 2010). These changes manifest as alterations in
precipitation intensity in both spatial and temporal dimensions, termed the spatiotemporal
velocity of precipitation intensity. This phenomenon has ecological implications, as it can
influence the habitats of plants and animals. When precipitation intensity changes gradually,
plant and animal habitats remain relatively stable. However, when changes are abrupt, the
risk of droughts or floods arises, prompting potential plant and animal species migrations
in response to spatiotemporal velocity shifts. Therefore, studying the spatiotemporal velocity
of precipitation intensity is of paramount practical significance. Regrettably, this aspect has
received limited attention.

In contrast, considerable research has been devoted to other climate changes, particularly
temperature shifts. Studies by Furey et al. (2012) and Holsinger et al. (2014) have delved
into the impact of temperature-dominated climate changes on landscapes. Sloat et al. (2005)
assessed ecological suitability by studying river temperatures, while Loarie et al. (2009)
investigated how temperature changes affect the activities of plants and animals. Schliep,
Gelfand, and Clark (2015) explored the relationship between the speed of climate change and
temperature variations. These factors mentioned above, including topography, geographical
location, temperature, and time, collectively influence the spatiotemporal velocity of annual
precipitation intensity. The insights gained from studies on climate change are instructive
when considering changes in precipitation intensity. Building upon the spirit of these studies,
we aim to predict future trends in precipitation intensity by studying the velocity of precipita-
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tion intensity. These predictions can inform flood control and drought prevention measures,
ultimately reducing losses.

In this article, we propose an RVF model that incorporates time, longitude, latitude, and
spatiotemporal effect factors to accomplish our objectives. This model allows us to analyze
annual precipitation intensity and its velocity in six countries across five continents, each
in different regions. Through this model, we study the annual precipitation intensity and
velocity of six countries on five continents in different regions. The data employed for
this analysis consist of annual precipitation intensity datasets for China, the United States,
Australia, the Netherlands, India, and Brazil, encompassing information on precipitation
observation locations, time, and precipitation intensity. These weather station datasets are
highly reliable. The spatiotemporal effect factors within our model are approximated using
the Gaussian random field, a mathematical framework with well-established properties
inherited from the normal distribution (Gu, Fei, and Sun 2020; Rhode 2020; Liu et al. 2020;
Rui et al. 2020a; Sørbye and Rue 2014). Given the high dimensionality of the data, we
employ the predictive process to mitigate over-fitting and achieve dimensionality reduction.
The predictive process effectively models the initial process realization within a lower-
dimensional subspace, reducing computational complexity. Parameter estimation for the
annual precipitation intensity RVF model uses the Markov Chain Monte Carlo (MCMC)
method (Reis and Stedinger 2005; Mendes, Turkman, and Corte-Real 2006; Sigrist, Künsch,
and Stahel 2011), which allows us to study the future precipitation intensity velocity in
various regions across the six countries. Our findings indicate that annual precipitation
intensity has increased significantly in some countries and regions, leading to an elevated
risk of flooding. Therefore, proactive flood control measures should be implemented. Con-
versely, other areas are susceptible to drought risks, necessitating a focus on environmental
conservation, increased vegetation, and improved water storage arrangements. This model
offers valuable insights for ensuring food production safety and effective urban flood control
measures.

The rest of the article is organized as follows. In Section 2, we introduce the general
annual precipitation model and derive annual precipitation models of varying orders using
Taylor expansion. In Section 3, we delve into the Bayesian parameter estimation method and
provide a detailed derivation of the posterior distribution of parameters. Section 4 is dedicated
to describing the simulation experiment conducted in the study. In Section 5, the authors
provide an overview of the datasets used, which consist of annual precipitation intensity data
from six different regions spanning five continents. Section 6 involves model fitting, parameter
estimation for the RVF model, and the analysis of annual precipitation intensity velocity using
the RVF model. The article concludes with Section 7.

2. Model

This chapter aims to formulate the RVF model. In Section 2.1, we introduce a general model
for annual precipitation. To prevent over-fitting, we apply the prediction process to this model.
Subsequently, we conduct an initial exploration of the RVF model. Section 2.2 introduces two
annual precipitation models of varying orders derived through Taylor expansion. The order
of the annual precipitation model is determined using AIC and BIC criteria. Following this,
we present the relevant RVF model and establish the covariance function for the Gaussian
process.
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2.1. Annual precipitation random field model

This section presents a general model describing annual precipitation intensity at a specific
spatiotemporal point (x, y, z, t), where x, y, z, and t represent longitude, latitude, altitude, and
time.

2.1.1. Generalized parameter model
Taking into account various factors, including latitude, longitude, altitude, and time, we
propose a generalized model for annual precipitation:

P(x, y, z, t) = h(x, y, z, t) + W(x, y, z)f (t) + η(x, y, z, t), (2.1)

where P(x, y, z, t) represents the annual precipitation at the point (x, y, z, t), h(x, y, z, t) sig-
nifies a deterministic function capturing the spatiotemporal effect, W(x, y, z) is a random
function accounting for the rate of change in annual precipitation, f (t) is a determined
function, W(x, y, z)f (t) represents the random spatiotemporal effect, and η(x, y, z, t) is a
random perturbation term characterized by a normal distribution with a mean of 0 and
a variance of σ 2

p and is independent of other terms in the model. Specifically, we use the
Gaussian random field to approximate the spatial random effect W(x, y, z), a commonly
utilized approach known for its favorable results across various scenarios.

2.1.2. Predictive process
Given the uneven spatial distribution of monitoring sites, correlations emerge in the annual
precipitation across certain areas. Moreover, over-fitting becomes a concern when dealing
with high-dimensional data, potentially resulting in unsatisfactory model fitting and pre-
diction results. As a solution, we adopt the predictive process (Banerjee et al. 2008) within
formula (2.1) to mitigate correlations and prevent over-fitting while retaining as much of
the original information as possible. This involves standardizing the geographical locations
using the predictive process and projecting them onto a designated coordinate, typically an
isometric grid point.

The predictive process is integrated into the model (2.1), yielding the formulation

P(x, y, z, t) = h(x, y, z, t) + W̃(x, y, z)f (t) + η(x, y, z, t), (2.2)

with W̃(x, y, z) being represented as the Gaussian predictive process denoted by
E(W(x, y, z)|W∗) = C′

W,W∗(CW∗)−1W∗. This predictive process serves as spatial interpola-
tion through a dimension reduction process W∗ = [W(x∗

1, y∗
1, z∗

1), . . . , W(x∗
m, y∗

m, z∗
m)]′ . W∗

denotes a spatial process on a lower-dimensional subspace, where (x∗
j , y∗

j , z∗
j ), j = 1, . . . , m

are the positions of the nodes. To elaborate, W(x, y, z) is projected onto W∗ within
this lower dimension. By examining the relationship between W̃(x, y, z) and W(x, y, z)
and W∗, it is evident that the covariance of W̃(x, y, z) is C′

W,W∗(CW∗)−1CW,W∗ , where
(CW,W∗)j = Cov

(
W(x, y, z), W(x∗

j , y∗
j , z∗

j )
)
, (CW∗)ij = Cov

(
W(x∗

i , y∗
i , z∗

i ), W(x∗
j , y∗

j , z∗
j )

)
,

i, j = 1, . . . , m.
The chosen covariance function for the predictive process is the Matérn class covariance

function, a fundamental component in spatial statistics. With the continuous evolution of
spatiotemporal data modeling, there is an increasing need for in-depth theoretical research
on spatiotemporal covariance structures. The selection of the Matérn model is primarily
motivated by its parameter ν, which governs the smoothness of the random field. A higher ν

value leads to a smoother random field. Despite the control parameters, the smooth random
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field retains flexibility, a crucial aspect of spatial interpolation. It’s worth noting that the model
is m order mean-square differentiable only when ν > m. If ν is non integer and equals 1

2 + m,
the model is said to be rational.

2.1.3. The RVF
Building upon the established annual precipitation model and drawing from the studies by
Furey et al. (2012); Holsinger et al. (2014); Sloat et al. (2005); Loarie et al. (2009); Schliep,
Gelfand, and Clark (2015) as references, we introduce the following random velocity field
(RVF).

Based on the main part of Equation (2.2), we propose the RVF. Taking the conditional
expectation of annual precipitation P(x, y, z, t) in Equation (2.2), we obtain

R(x, y, z, t) = E
(
P(x, y, z, t)|W∗) = h(x, y, z, t) + W̃(x, y, z)f (t). (2.3)

In Equation (2.3), R(x, y, z, t) is a realization of a random process and is mean-square
differentiable. Calculating the temporal and spatial gradient at time t and position (x, y, z),
respectively, one has the velocity in unit direction u = [ux, uy, uz]′ as follows:

∂R(x,y,z,t)
∂t

∇R(x, y, z, t)u
=

∂R(x,y,z,t)
∂t

∂R(x,y,z,t)
∂x ux + ∂R(x,y,z,t)

∂y uy + ∂R(x,y,z,t)
∂z uz

,

where u2
x + u2

y + u2
z = 1, ∂R(x,y,z,t)

∂x , ∂R(x,y,z,t)
∂y , ∂R(x,y,z,t)

∂z , and ∂R(x,y,z,t)
∂t are partial derivatives

in the x, y, z, and t directions, respectively, ∇R(x, y, z, t)u represents the gradient in direction
u and ∇R(x, y, z, t) = [ ∂R(x,y,z,t)

∂x , ∂R(x,y,z,t)
∂y , ∂R(x,y,z,t)

∂z ] represents the spatial gradient of annual
precipitation.

For instance, the temporal gradient represents the time velocity of annual precipitation,
and the spatial gradient represents the space velocity of annual precipitation. The annual
precipitation velocity, measured in kilometers per year, is the temporal and spatial gradient
ratio. The velocity in direction u is the ratio of the Gaussian random field, which is also a
Gaussian random field.

The direction with the maximum unit gradient is denoted by ∇R(x,y,z,t)
‖∇R(x,y,z,t)‖ , where

‖∇R(x, y, z, t)‖ represents the magnitude of the maximum gradient. The minimum
rate of velocity corresponds to the velocity in the unit direction of the maximum
gradient, that is,

∂R(x,y,z,t)
∂t

‖∇R(x, y, z, t)‖ . (2.4)

As the numerator can be either positive or negative, the velocity can also be positive or
negative. When the ratio is positive, the change in annual precipitation along the direction
of the maximum gradient is the minimum; conversely, when the ratio is negative, the change
in annual precipitation in the direction opposite to the direction of the maximum gradient is
the minimum.
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2.2. Model parameterization

To parameterize model (2.1), we initiate a Taylor expansion of its components at zero, that is,

h(x, y, z, t) =
∞∑

i=0

1
i! (x

∂

∂x
+ y

∂

∂y
+ z

∂

∂z
+ t

∂

∂t
)ih(0, 0, 0, 0) (2.5)

≈
p∑

i=0

1
i! (x

∂

∂x
+ y

∂

∂y
+ z

∂

∂z
+ t

∂

∂t
)ih(0, 0, 0, 0)

=
p∑

i=0

∑
j1+j2+j3+j4=i

j1,j2,j3,j4∈N

βj1,j2,j3,j4 xj1 yj2 zj3 tj4 1
i!

= Xβ
′
,

and

f (t) =
∞∑

i=0

ti

i! f (i)(0) (2.6)

≈
q∑

i=0

ti

i! f (i)(0)

= tα
′
,

where β = [β1, . . . , βp]1×M , M = ∑p
i=0 4i, βi = [βi,0,0,0, . . . , β0,0,0,i]1×4i is the Taylor expan-

sion coefficient of order i, X = [X1, . . . , Xp]1×M , Xi = 1
i! [xiy0z0t0, . . . , x0y0z0ti]1×4i , t =

[ t0

0! , . . . , tq

q! ]1×(q+1), α = [f ′
(0), . . . , f (q)(0)]1×(q+1).

By substituting Equations (2.5) and (2.6) into the model (2.1), we obtain the generalized
parameter model as follows:

P(x, y, z, t) = Xβ
′ + W(x, y, z)tα

′ + η(x, y, z, t). (2.7)

In Equation (2.7), the order of Equation (2.7) grows exponentially (order 4i) due to the
dimension expansion issue. Consequently, this article explores models where p, q ∈ {0, 1}, and
we select the optimal p and q using AIC and BIC criteria. The expressions for the models with
p, q ∈ {0, 1} are as follows:

P0(x, y, z, t) = β0 + W1(x, y, z) + η(x, y, z, t) (2.8)
= X0β

0 + W1(x, y, z) + η(x, y, z, t),

and

P1(x, y, z, t) = β0 + β1x + β2y + β3z + β4t + W1(x, y, z) + W2(x, y, z)t + η(x, y, z, t)
(2.9)

= X1β
1 + W1(x, y, z) + W2(x, y, z)t + η(x, y, z, t),

where X0 = [L], X1 = [L, x, y, z, t], L is an n-dimensional column vector with all 1′s, n is the
data size, and β0 = β0, β1 = [β0, β1, β2, β3, β4]	. Applying the predictive process to these two
models, we find that

P0(x, y, z, t) = X0β
0 + W̃1(x, y, z) + η(x, y, z, t), (2.10)
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and

P1(x, y, z, t) = X1β
1 + W̃1(x, y, z) + W̃2(x, y, z)t + η(x, y, z, t), (2.11)

where W̃1(x, y, z) = E(W1(x, y, z)|W∗
1) = C′

W1,W∗
1
(CW∗

1
)−1W∗

1 and W̃2(x, y, z) =
E(W2(x, y, z)|W∗

2) = C′
W2,W∗

2
(CW∗

2
)−1W∗

2. Subsequently, the corresponding RVF models
based on the aforementioned predictive processes are as follows:

R0(x, y, z, t) = X0β
0 + W̃1(x, y, z), (2.12)

and

R1(x, y, z, t) = X1β
1 + W̃1(x, y, z) + W̃2(x, y, z)t. (2.13)

It’s worth noting that the RVF model (2.12) can be viewed as a special case of the RVF
model (2.13). Therefore, we will focus on the results derived from the RVF model (2.13) in the
subsequent analysis. To compute the gradient in detail for the RVF model (2.13), let S∗ and
Q∗ represent the m × m autocorrelation matrices of W∗

1 and W∗
2, respectively. Specifically,

S∗
ij = ρ(dij; φ1) and Q∗

ij = ρ(dij; φ0), where φ1 and φ0 are attenuation parameters, and i, j =
1, . . . , m. Let s(x, y, z) and q(x, y, z) denote the cross-correlation vectors of size m × 1, where
si(x, y, z) represents the correlation between W1(x, y, z) and W1(x∗

i , y∗
i , z∗

i ), i = 1, . . . , m,
and qi(x, y, z) signifies the correlation between W2(x, y, z) and W2(x∗

i , y∗
i , z∗

i ), for i =
1, . . . , m. Additionally, let β∗ = [β1, β2, β3]	, ∇sT(x, y, z) = [ ∂sT(x,y,z)

∂x , ∂sT(x,y,z)
∂y , ∂sT(x,y,z)

∂z ]	,

∇qT(x, y, z) = [ ∂qT(x,y,z)
∂x , ∂qT(x,y,z)

∂y , ∂qT(x,y,z)
∂z ]	. Then, the spatial gradient ∇R(x, y, z, t)	 of

annual precipitation can be determined using the following formulas:

∇R(x, y, z, t)	 = β∗ + ∇sT(x, y, z)S∗−1W∗
1 + ∇qT(x, y, z)Q∗−1W∗

2t. (2.14)

The temporal gradient of annual precipitation is represented as
∂R(x, y, z, t)

∂t
= β4 + qT(x, y, z)Q∗−1W∗

2. (2.15)

Equation (2.14) provides the velocity of annual precipitation per unit distance in the x, y,
and z directions. The spatial gradient follows a Gaussian random field distribution. Notably,
the temporal gradient (2.15) is characterized as a Gaussian process, and its covariance can be
readily computed. Since the formula (2.15) lacks a time component, it can be considered a
simple surface. To ensure the first-order mean square differentiability of the RVF model, we
select the Matérn model with ν = 3/2.

A strong spatial correlation exists among annual precipitation levels in different regions,
with closer distances exhibiting higher correlation coefficients. This spatial relationship can
be expressed through a covariance matrix. For any two positions (xi, yi, zi) and (xj, yj, zj), the
covariance of W1(xi, yi, zi) and W1(xj, yj, zj) is

Cov
(
W1(xi, yi, zi), W1(xj, yj, zj)

) = τ 2
1
(
1 + φ1dij exp(−φ1dij)

)
,

and the covariance of W2(xi, yi, zi) and W2(xj, yj, zj) is

Cov
(
W2(xi, yi, zi), W2(xj, yj, zj)

) = τ 2
0
(
1 + φ0dij exp(−φ0dij)

)
,

where dij represents the distance between (xi, yi, zi) and (xj, yj, zj), φ1 and φ0 are the spatial
attenuation parameters, τ 2

1 and τ 2
0 are the spatial variance parameters, which do not play a role

in subsequent parameter estimation and are therefore set to 1 for computational convenience.
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Once the covariance function is determined, we can calculate the spatial gradient of
annual precipitation. Initially, we compute the derivatives of sj(x, y, z) and qj(x, y, z), where
j = 1, . . . , m, concerning x, y and z. Let

∇sj(x, y, z) = [∂sj(x, y, z)
∂x

,
∂sj(x, y, z)

∂y
,
∂sj(x, y, z)

∂z
],

∇qj(x, y, z) = [∂qj(x, y, z)
∂x

,
∂qj(x, y, z)

∂y
,
∂qj(x, y, z)

∂z
],

and

Ai = diag
(
φ2

i exp(−φid), φ2
i exp(−φid), φ2

i exp(−φid)
)
, i = 0, 1.

The derivatives of sj(x, y, z), qj(x, y, z) with respect to x, y and z are given by

[∇sj(x, y, z), ∇qj(x, y, z)] = −[c, c]
(

A1 0
0 A0

)
.

where c = (x − x∗
j , y − y∗

j , z − z∗
j ) and d = ‖c‖.

3. Bayesian parameter estimation

3.1. Markov Chain Monte Carlo method

A Markov chain is a discrete random variable set that exhibits the Markov property. Specifi-
cally, for the sequence of random variables denoted as X = {Xn, n > 0} within the probability
space (�, F, P), where the sample space is an exponential set, if the values of these random
variables all belong to a countable set: X = si, where si ∈ s, and if the conditional probability
of a random variable satisfies the relation:

p(Xt+1|Xt , . . . , X1) = p(Xt+1|Xt),

then X is called a Markov chain. The countable set s, a subset of the integers (Z), is termed the
state space, and the values that the Markov chain takes within this state space are referred to
as states. The equation above defines a Markov chain and encapsulates the Markov property,
often called ”memorylessness”. It implies that the random variable at time t + 1 is independent
of the other random variables beyond time t, given the random variable at time t.

Markov chains find application in the Monte Carlo method to create Markov Chain Monte
Carlo (MCMC). In this context, if � denotes a particular space, n signifies the total number
of generated samples, m represents the number of samples at which the chain attains stability,
and x is the parameter to be estimated, the fundamental concept of the MCMC method can
be briefly summarized as follows:

(1) Construct a Markov Chain: Formulate a Markov chain designed to converge to a
stationary distribution, denoted as π(x).

(2) Sample Generation: Commencing from a point x(0) within �, employ the Markov chain
from step (1) for simulating samples, generating a sequence of points: x(1), . . . , x(n).

(3) Monte Carlo Integral: Estimate the expected value of any function f (x) as E
[
f (t)

] =
1

n−m
∑n

t=m+1 f
(
x(t)).

The construction of the Markov chain transfer kernel is essential for the MCMC method.
Different transfer kernel produces different MCMC methods. One widely utilized MCMC
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method is Gibbs sampling, while a more general approach is the Metropolis-Hastings
method. MCMC facilitates transforming a given probability distribution, π(x), into a stable
distribution.

3.2. Derivation of posterior distributions

In the context of the RVF model (2.13), where θ = [β , φ1, φ0, W∗
1, W∗

2, σ 2
p ] repre-

sents the parameter vector and P = [P1, . . . , PT] represents the sample, with Pt =
[P(x1, y1, z1, t), . . . , P(xn, yn, zn, t)]′ being the annual precipitation observed at n locations
over time t, the joint distribution of P and parameter θ can be expressed as f (P, θ) =
f (P|θ)π(θ) = f (θ |P)f (P). Consequently, we derive the posterior distribution of θ , denoted
as f (θ |P) = f (P|θ)π(θ)

f (P)
∝ f (P|θ)π(θ), given that f (P) does not carry any information about θ .

For the parameters β = [β0, β1, β2, β3, β4]′, φ1, φ0, W∗
1, W∗

2, and σ 2
P , non informative

conjugate prior distributions have been assigned to all the hyperparameters. Specifically,
the coefficients βk, k = 0, 1, 2, 3, 4, are independent and follow a common normal prior
distribution with a mean of zero and a variance of 104. The variance σ 2

P of the error term
η(x, y, z, t) follows a non informative conjugate inverse gamma IG(2,2) prior distribution. The
spatial attenuation parameters φ1 and φ0 are subject to a uniform prior distribution bounded
by the minimum and maximum distances observed at the sites. Therefore, the complete
posterior distribution for all parameters is represented as

π(θ |P) = π(β , W∗
1, W∗

2, φ1, φ0, σ 2
P |P) ∝

T∏
t=1

π(Pt|β , W∗
1, W∗

2, φ1, φ0, σ 2
P )

× π(β , W∗
1, W∗

2, φ1, φ0, σ 2
P ). (3.1)

Since β , φ1, φ0, σ 2
P are independent, Equation (3.1) is equivalent to

T∏
t=1

π(Pt|β , W∗
1, W∗

2, φ1, φ0, σ 2
P ) × π(W∗

1, φ1) · π(W∗
2, φ0) · π(β) · π(σ 2

P )

∝
T∏

t=1
π(Pt|β , W∗

1, W∗
2, φ1, φ0, σ 2

P ) × π(W∗
1|φ1) · π(φ1) · π(W∗

2|φ0) · π(φ0) · π(β) · π(σ 2
P )

=
T∏

t=1
π(Pt|β , W∗

1, W∗
2, φ1, φ0, σ 2

P ) × π(W∗
1|φ1) · π(W∗

2|φ0) · π(β , φ1, φ0, σ 2
P ),

that is,

π(θ |P) = π(β , W∗
1, W∗

2, φ1, φ0, σ 2
P |P)

∝
T∏

t=1
π(Pt|β , W∗

1, W∗
2, φ1, φ0, σ 2

P ) × π(W∗
1|φ1) × π(W∗

2|φ0) × π(β , φ1, φ0, σ 2
P ).

Letting �P = σ 2
P In, W1 = AW1 W∗

1 and W2 = AW2 W∗
2, where �β represents the prior

covariance of β , AW1 = C′
W1,W∗

1
(CW∗

1
)−1, AW2 = C′

W2,W∗
2
(CW∗

2
)−1, we can derive the joint
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posterior distribution of parameters β , W∗
1, W∗

2 and σ 2
P as

π(β , W∗
1, W∗

2, φ1, φ0, σ 2
P |P)

∝
T∑

t=1
|�P|−1/2 exp

( − 1/2(Pt − Xtβ − W1 − W2t)	�−1
P (Pt − Xtβ − W1 − W2t)

)
× |CW∗

1
|−1/2 exp

(
(−1/2)W∗	

1 C−1
W∗

1
W∗

1
)|CW∗

2
|−1/2 exp

(
(−1/2)W∗	

2 C−1
W∗

2
W∗

2
)

× |�β |−1/2 exp
(
(−1/2)β	�−1

β β
)
(σ 2

P )−2−1 exp(− 2
σ 2

P
). (3.2)

When formula (3.2) contains only one parameter to be estimated, the remaining parameters
can be treated as constants, thereby eliminating them. Subsequently, a mixed sampling
approach, comprising Gibbs and Metropolis-Hastings (MH) sampling, is employed for
parameter estimation. The iterative procedure is outlined as follows:

Step 1: Initialize values (W∗(0)
1 , W∗(0)

2 , φ(0)
1 , φ(0)

0 , σ 2(0)
P ) for the parameters

W∗
1, W∗

2, φ1, φ0, σ 2
P being evaluated.

Step 2: Set l = 1 and iterate through the parameters via the fully conditional posterior
distribution:

(1) Generate β(l) using (W∗(l−1)
1 , W∗(l−1)

2 , φ(l−1)
1 , φ(l−1)

0 , σ 2(l−1)
P ) and the density

f (β|·) ∝ exp
( − 1/2(β − V−1U)	V(β − V−1U)

)
,

where V = ∑T
t=1 X	

t �−1
P Xt + �−1

β , U = ∑T
t=1 X	

t �−1
P (Pt − W1 − W2t).

(2) Generate W∗(l)
2 using (β(l), W∗(l−1)

1 , φ(l−1)
1 , φ(l−1)

0 , σ 2(l−1)
P ) and the density

f (W∗
2|·) ∝ exp

( − 1/2(W∗
2 − V−1U)	V(W∗

2 − V−1U)
)
,

where V = (CW∗
2
)−1 + A	

W2
�−1

P AW2

∑T
t=1 t2, U = A	

W2
�−1

P
∑T

t=1 t(Pt − Xtβ − W1).
(3) Generate φ

(l)
0 using (β(l), W∗(l)

2 , W∗(l−1)
1 , φ(l−1)

1 , φ(l−1)
0 , σ 2(l−1)

P ) and the MH method, with
the probability of acceptance φc

0 defined as

h = min
(
1,

∏T
t=1 π(Pt|β , W1, W∗

2, σ 2
P , φc

0)π(W∗
2|φc

0)π(φc
0)g(φ0|φc

0)∏T
t=1 π(Pt|β , W1, W∗

2, σ 2
P , φ0)π(W∗

2|φ0)π(φ0)g(φc
0|φ0)

)
,

where g(·|·) is the proposal distribution.
(4) Generate σ

2(l)
P using (β(l), W∗(l)

2 , φ(l)
0 , W∗(l−1)

1 , φ(l−1)
1 ) and the density

f (σ 2
P |·) ∝ (σ 2

P )2+nT/2 exp
( − 2 + 1/2

∑T
t (Pt − Xtβ − W1 − W2t)	(Pt − Xtβ − W1 − W2t)

σ 2
P

)
.

(5) Generate W∗(l)
1 using (β(l), W∗(l)

2 , φ(l)
0 , σ 2(l)

P , φ(l−1)
1 ) and the density

f (W∗
1|·) ∝ exp

( − 1/2(W∗
1 − V−1U)	V(W∗

1 − V−1U)
)
,

where V = (CW∗
1
)−1 + TA	

W1
�−1

P AW1 , U = A	
W1

�−1
P

∑T
t=1(Pt − Xtβ − W2t).

(6) Generate φ
(l)
1 using (β(l), W∗(l)

1 , W∗(l)
2 , φ(l)

0 , σ 2(l)
P , φ(l−1)

1 ) and the MH method, with the
probability of acceptance φc

1 defined as

r = min
(
1,

∏T
t=1 π(Pt|β , W∗

1, W2, σ 2
P , φc

1)π(W∗
1|φc

1)π(φc
1)g(φ1|φc

1)∏T
t=1 π(Pt|β , W∗

1, W2, σ 2
P , φ1)π(W∗

1|φ1)π(φ1)g(φc
1|φ1)

)
,

where g(·|·) is the proposal distribution.
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Table 1. Parameter estimations of the simulation model.
Parameter Preset Estimation

β0 1.01 1.02
β1 −0.71 −0.71
β2 0.72 0.72
β3 −0.22 −0.21
φ0 0.50 0.50
φ1 2.00 2.00
σ 2

P 0.05 0.05

Step 3: Repeat Step 2 k times, with k being the total number of iterations.
Following the above procedure, we can obtain MCMC estimates for all model parameters.

4. Simulation

In this section, we perform simulations to evaluate the effectiveness of the proposed parameter
estimation method for the RVF model. All the simulations are carried out using MATLAB.
We configure the number of the annual precipitation monitoring stations and grid points
of the predictive process as follows: n = 1500, m = 16, and t = 60. It’s important to note
that m is much smaller than n, maintaining a ratio of about 1:100. Striking this balance
is essential since an excessively large value of m can hinder model performance, while an
overly small m can lead to overfitting. Recognizing that the influence of altitude on annual
precipitation is not apparent, we incorporate the altitude factor into the stochastic perturba-
tion term within the RVF model. We set the maximum and minimum values of longitude
and latitude in the low-dimensional space to be the same as those in the high-dimensional
space and divide them equally into 16 grid points. Consequently, the simulation model is
considered as

P(x, y, t) = Xβ + W1(x, y) + W2(x, y)t + η(x, y, t)
= β0 + β1x + β2y + β3t + W1(x, y) + W2(x, y)t + η(x, y, t), (4.1)

where β = [β0, β1, β2, β3]′ and X = [L, x, y, t].
The model parameters are obtained by iterating 20,000 times, and the estimated values

for the RVF model parameters are presented in Table 1. Based on the simulation results, it
is evident that the estimated parameters closely approximate the preset parameter values.
These results suggest that the parameter estimation method employed in this paper accurately
fits the data and provides meaningful interpretations. Figure 1 displays the results from the
final 19,000 iterations, encompassing seven parameters. Notably, it becomes apparent that all
parameter iteration values stabilize around the 10,000th iteration, indicating convergence to
a consistent state.

5. The data

We collect data from meteorological stations in six prominent countries across five conti-
nents to study global annual precipitation and its spatiotemporal dynamics. These datasets
encompass critical information, including the number of monitoring stations, geographical
coordinates, time, and precipitation to millimeter accuracy. The datasets vary in size from
114KB to 260MB. Specifically, we utilize data from 31 precipitation monitoring stations
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Figure 1. Results of 19,000 iterations on the parameters. (a)β , (b)φ0, (c)φ1, and (d)σ 2
P .

covering 2004 to 2018 for China. For India, we analyze data from 35 precipitation monitoring
stations covering 2000–2015. For the Netherlands, our dataset includes information from 32
monitoring stations from 2001 to 2016. For the United States, we focus on 98 precipitation
monitoring stations in three states (Alabama, Mississippi, and Georgia) from 1999 to 2011.
In addition, we examine data from 24 precipitation monitoring stations in Brazil, covering
the years 1998 to 2017. Lastly, in the case of Australia, our dataset comprises 45 precipitation
monitoring stations, covering the years 2009 to 2016. Table 2 provides a concise summary of
the geographical distributions of these six countries, along with details regarding the number
of monitoring locations, periods covered in the datasets, and the data sources. In practice,
we use an equilateral conic projection to convert latitude and longitude into Cartesian
coordinates. Figure 2 displays distribution maps of precipitation monitoring stations in these
six countries, where the horizontal axis represents longitude, and the vertical axis corresponds
to latitude.
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Table 2. Basic information on the collected datasets.
Continent Country The Selected Data

number period sources
of sites

Asia China 31 2004-2018 http://www.stats.gov.cn/tjsj/ndsj/
Asia India 35 2000-2015 https://www.kaggle.com/rajanand/rainfall-in-india
Europe Netherlands 32 2001-2016 https://www.kaggle.com/sinaasappel/historical-weather-in-the-netherlands-19012018
North the 98 1999-2011 https://www.kaggle.com/noaa/noaa-precipitation-15-minute
America United States
South Brazil 24 1998-2017 https://www.kaggle.com/fabiopotsch/precipitation-in-brazil
America
Oceania Australia 45 2009-2016 https://www.kaggle.com/jsphyg/weather-dataset-rattle-package

Figure 2. Geographical distributions of precipitation monitoring stations. (a) China, (b) India, (c) the
Netherlands, (d) the United States, (e) Brazil, and (f ) Australia.

Figure 3 shows the annual precipitation data from a single monitoring station in the
six countries. The horizontal axis represents the year, while the vertical axis represents the
precipitation depth. In this figure, the blue line represents each country’s total annual mean
precipitation intensity over the years, while the red line depicts the annual precipitation for
each year. Examination of the datasets and Figure 3 reveals that the annual precipitation in
each country has remained relatively stable in recent years. However, it is worth noting that
there are significant variations in the total annual mean precipitation levels across different
regions within each country.

6. Application

To assess the goodness of fit between models (2.8) and (2.9), we initially employ the AIC and
BIC criteria. Specifically, we compare models’ AIC and BIC values with different orders using
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Figure 3. Line graphs of annual precipitation from selected precipitation monitoring stations in the six
countries, arranged from left to right and top to bottom as China, India, the Netherlands, the United States,
Brazil, and Australia.

Table 3. Comparison results of the models with different orders.
Model AIC BIC

p = q = 0 −830.50 −826.20
p = q = 1 −715.95 −705.91

the annual precipitation dataset from China, and the results are presented in Table 3. These
criteria are denoted as

AIC = 2k − 2 ln(L), and BIC = k ln(n) − 2 ln(L),

where k represents the estimated number of parameters, L signifies the likelihood function,
and n corresponds to the sample size. Upon examining the AIC and BIC values presented
in Table 3, it is evident that the model with orders p = q = 1 exhibits smaller values.
Consequently, we selected model (2.9) as the annual precipitation model for this study.

The datasets for the six countries are subjected to modeling and iteration using the
provided estimation procedure for a total of 10,000 iterations, with the first half discarded.
Subsequent posterior estimates of the model parameters are derived and presented in Table 4.
Table 4 displays the format for the parameter β as (estimate, sd), where, for example, (–0.70,
0.13) indicates an estimate of –0.70 with a standard error of 0.13.

According to the obtained parameters, we have developed annual precipitation and RVF
models for the six countries. Figure 4 depicts the maximum gradient direction of annual
precipitation in some regions within these countries. The black point represents the starting
point, while the red arrow indicates the direction of the maximum gradient. When an
increasing trend in annual precipitation is observed, the direction of the arrow ensures a
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Table 4. Estimated parameters for six countries.
Parameter China India Netherlands the United States Brazil Australia

β0 (0.95,0.26) (1.72,1.00) (8.14,0.96) (40.61,1.88) (3.42,1.14) (−0.14,0.28)
β1 (−0.50,0.04) (−0.47,0.16) (0.06,0.17) (−2.09,0.72) (−0.31,0.22) (0.43,0.08)
β2 (0.02,0.16) (0.68,0.23) (0.13,0.18) (−2.69,0.72) (−0.11,0.18) (0.13,0.23)
β3 (0.02,0.10) (−0.89,0.02) (−0.05,0.01) (0.42,0.61) (5.37E-04,0.01) (−0.01,0.04)
φ0 6.76 2.13E-05 14.79 1.04 6.88 12.32
φ1 1.25 0.87 21.95 10.08 0.53 6.61
σ 2

P 0.07 0.36 1.57 1.47E+02 0.28 0.10
W1 range (0.05,1.37) (−2.57,0.94) (−9.60E-06,0.10) (−0.86,0.73) (−1.73,0.04) (−0.94,0.32)
W2 range (−0.02,0.01) (0.89,0.89) (−0.01,7.50E-09) (−1.31,1.10) (−0.10,0.03) (−7.54E-10,0.08)

Figure 4. Maximum gradient direction of annual precipitation in parts of six countries. (a) China, (b) India,
(c) the Netherlands, (d) the United States, (e) Brazil, and (f ) Australia.

constant level of annual precipitation. Typically, this direction follows a trajectory from the
coast to the interior.

The minimum velocity of any region can be calculated using Equation (2.4) after obtaining
the direction of the maximum gradient. In the current maximum gradient direction, the
annual precipitation velocity of this region will be the minimum in the future. If the minimum
velocity is greater than 1, the future annual precipitation in this region will have a temporal
velocity greater than its spatial velocity; conversely, if it is less than 1, the opposite is true.

Furthermore, six precipitation monitoring stations are used as examples to study and
analyze the minimum velocity. Table 5 shows that the minimum velocities at the six selected
monitoring stations are all less than 1, indicating that their temporal velocities are all less than
their spatial velocities. The smallest temporal velocity is in Brazil, and the largest temporal
and spatial velocities are both in the United States. The Netherlands has the largest minimum
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Table 5. Minimum velocities for selected precipitation monitoring stations in six countries.
Parameter China India Netherlands the United States Brazil Australia

Temporal velocity 0.03 0.01 −0.04 0.64 −0.00 −0.02
Longitude velocity −0.71 −1.07 0.24 3.33 −0.38 −0.04
Latitude velocity −0.32 0.12 0.03 2.91 0.12 −0.29
Minimum velocity 0.04 0.01 −0.17 0.15 −0.01 −0.05

velocity. Interestingly, the temporal velocity is in the same direction as the minimum velocity,
while the results are reversed for the United States and Australia. The temporal and spatial
velocities of the United States are all positive, while those of Australia are all negative. In
other words, in the current gradient direction, the annual precipitation of the United States
is increasing, while that of Australia is decreasing. Regarding minimum velocity values, the
Netherlands has the highest risk and the fastest change of the six regions. In addition, the
annual precipitation is decreasing in the current gradient direction, suggesting that the region
will likely face water scarcity in the future. Some preventive measures, such as improving water
resource use efficiency and building reservoirs, can be taken in advance.

7. Conclusion

In this article, we develop an RVF model to predict the future annual precipitation velocity
in different regions. The spatiotemporal gradient at any location can be calculated using the
directional derivative, which allows us to obtain the annual precipitation velocity. We apply
this RVF model to the annual precipitation data of six countries on five continents (China,
India, the Netherlands, the United States, Brazil, and Australia) and obtain a good fitting
effect, providing a satisfactory explanation for the dataset. When the intensity of precipitation
in the current year increases, it indicates that the annual precipitation in the future will rise. If
the increase is too large, one should expect floods and other disasters and take flood control
and waterlogging prevention measures in advance. Conversely, water storage arrangements
should be made. Additionally, we can analyze the maximum gradient direction of a certain
location and obtain the minimum annual precipitation velocity. The minimum annual
precipitation velocity indicates the rate of change of speed along the direction of the maximum
annual precipitation gradient. If the minimum velocity is higher, it indicates that future annual
precipitation will change rapidly, requiring the region to take measures for future industrial
and agricultural production and to prepare for the possibility of natural disasters. This article
has some limitations. To simplify the calculations, f (t) is parameterized as a function of t.
However, the model can be further extended to include additional terms, such as f (t) being
a function of t2, etc. The RVF model does not consider the relationship between temperature
and precipitation or the influence of climate and mountains. Nevertheless, the model’s overall
performance is satisfactory, and it can be used in different regions of any country with
relatively small spatial limitations.
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