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1. Introduction

For independent and identically distributed bivariate Gaussian random vectors with constant coefficient in
each vector, Sibuya [16] showed that componentwise maxima are asymptotically independent, and Embrechts
et al. [1] proved the asymptotical independence in the upper tail. To overcome those shortcomings in its
applications, Hiisler and Reiss [11] considered the asymptotic behaviors of extremes of Gaussian triangular
arrays with varying coefficients. Precisely, let {(X,;,Yni),1 < ¢ < n,n > 1} be a triangular array of
independent bivariate Gaussian random vectors with EX,; = EY,; = 0, VarX,,; = VarY,; = 1 for
1<i<n,n>1 and Cov(X,:,Yni) = pn. Let F, (z,y) denote the joint distribution of vector (Xp;, Ya:)
for i < n. The partial maxima M, is defined by

M, = (MnlaMn2) = (1I£Iza<xn X 1rilz'a<xn Ynz)

Hiisler and Reiss [11] and Kabluchko et al. [12] showed that

n—oo n n

holds if and only if the following Hiisler—Reiss condition
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lim b2 (1 — p,) = 2)\? € [0, ] (1.2)

n—oo

holds, where the normalizing constant b, is the solution of the equation
1—®(b,)=n"" (1.3)

and the max-stable Hiisler—Reiss distribution is given by

= _ 7Y v Y=\ =
HA(x,y)—eXp< @(A—F X )6 @()\—}— o )e ), z,y € R, (1.4)

where ®(-) denotes the distribution function of a standard Gaussian random variable. Note that Ho(z,y) =
A(min(z,y)) and Heo(z,y) = A(z)A(y) with A(x) = exp(— exp(—z)), z € R.

Recently, contributions to Hiisler—Reiss distribution and its extensions are achieved considerably. For
instance, Hashorva [4,5] showed that the limit distributions of maxima also hold for triangular arrays of
general bivariate elliptical distributions if the distribution of random radius is in the Gumbel or Weibull
max-domain of attraction, and Hashorva and Ling [9] extended the results to bivariate skew elliptical
triangular arrays. For more work on asymptotics of bivariate triangular arrays, see [6-8].

Higher-order expansions of distributions of extremes on Hiisler—Reiss bivariate Gaussian triangular arrays
were considered firstly by Hashorva et al. [10] provided that p,, satisfies the following refined Hiisler—Reiss
condition

lim b2(\, — \) = a € R, (1.5)

n—oo
where A, = (1b2(1 — p,))/? and A € (0,00), with b, given by (1.3). Uniform convergence rate was
considered by Liao and Peng [14]. For copula version of the limit in Hiisler—Reiss model, Frick and Reiss [2]
considered the penultimate and ultimate convergence rates for distribution of (n(maxi<;<n, ®(Xn;) — 1),
n((maxi<i<n ®(Yni) — 1))), and Liao et al. [15] extended the results to the settings of n independent
and non-identically distributed observations, where the ith observation follows from normal copula with
correlation coefficient being either a parametric or a nonparametric function of i/n.

The objective of this paper is to study the asymptotics of powered-extremes of Hiisler—Reiss bivariate
Gaussian triangular arrays. Interesting results in [3] showed that the convergence rates of the distributions
of powered-extremes of independent and identically distributed univariate Gaussian sequence depend on the
power index and normalizing constants. Precisely, let |Mn|t denote the powered maximum with any power
index t > 0, then

nh_{rgo b2 []P’ (|Mn\t <cpzr+ dn) - A(m)] = A(z)p(z) (1.6)
with normalizing constants ¢, and d,, given by
cn =t % d,=0bl, t>0. (1.7)
Furthermore, for ¢t = 2 with normalizing constants ¢}, and d}, given by
ch=2-2b2 di =b2—2b,7, (1.8)

we have

n—oo

lim b [rp (|Mn\2 <ot d:;) - A(z)} — Ala)w(2), (1.9)
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where b, is defined by (1.3), and p(z) and v(z) are respectively given by

p(z) = (1 +z+ 22t:c2) e ()= — (; + 3z +:c2) e ", (1.10)

Motivated by findings of Hiisler—Reiss [11], Hall [3] and Hashorva et al. [10], we will consider the distri-
butional asymptotics of powered-extremes of Hiisler—Reiss bivariate Gaussian triangular arrays, and hope
that the convergence rates can be improved as ¢t = 2, similar to (1.9) in univariate case. Unfortunately, our
results provide negative answers except two extreme cases.

The rest of the paper is organized as follows. In Section 2 we provide the main results and all proofs are
deferred to Section 4. Some auxiliary results are given in Section 3.

2. Main results

In this section, the limiting distributions and the second-order expansions on distributions of normalized
bivariate powered-extremes are provided if p,, satisfies (1.2) and (1.5), respectively. The first main result,
stated as follows, is the limit distribution of bivariate normalized powered-extremes.

Theorem 2.1. If the Hiisler-Reiss condition (1.2) holds with A € (0,00), then for all x,y € R, we have

lim P (|Mn1|t < en + dn, | Mpa|* < cpy + dn> = Hi(z,y), (2.1)

n—oo

where the normalizing constants ¢, and d,, are given by (1.7).

Remark 2.1. For ¢ = 2, with arguments similar to the proof of Theorem 2.1 one can show that (2.1) also
holds with ¢, and d,, being replaced by ¢ and d} given by (1.8).

Next we investigate the convergence rate of

A(F"

Pnyt? HA; cn,dn; x,y) =P (|Mn1|t <cpT+ dna |Mn2|t < cpy + dn) - H)\(l'ay) —0 (22)
as n — oo under the refined second-order Hiisler—Reiss condition (1.5).

Theorem 2.2. If the second-order Hiisler-Reiss condition (1.5) holds with A, = (3b2(1 — p,))*/? and X €
(0,00), then for all z,y € R, we have

lim (logn)A(F?

n—00 pnt?

1

with

= y—x r—y _ 23\ ,.—= y—zx
T(a,)\,x,y,t)—u(x)q)(/\—l— o >+u(y)<l><)\+ o) >—|—(2a (x+y+2)A A)e <p<)\—|— N ),

where ¢(-) denotes the density function of a standard Gaussian random variable and p(x) is given by (1.10).

Remark 2.2. For t = 2, let ¢,, and d,, be replaced by ¢} and d respectively in (1.8), one can show that

lim (logn)A(F

) 9
n— 00 Pny2 n

* 7% 1
H)\;C dnvzyy) = ix(a7>\ax7y)H>\(x7y)
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with

x(a, A\, x,y) = (2a —(z4+y+2)A— )\3)6_‘”g0 ()\ + %) .
The result shows the fact that the convergence rates can not be improved as t = 2 with normalizing
constants ¢ and d, contrary to the result of univariate Gaussian case provided by Hall [3].

In order to obtain the convergence rates of (2.2) for two extreme cases A = 0 and A = co, we need some
additional conditions. The following results show that rates of convergence are considerably different with
different choice of normalizing constants. For the case of A = oo, with normalizing constants ¢, and d,
given by (1.7) we have the following results.

Theorem 2.3. With all x,y € R, power index t > 0 and the normalizing constants ¢, and d,, given by (1.7).
For pn € [-1,1),

(i) if pn € [-1,0], we have

lim (logn)A(F?

)
n—00 Pnst

Hoci ns s ,y) = 5 (o) + 1(0)) Hoc ), (2.4

(ii) if pr € (0,1) and lim,— o bzlg)lgf;n) =0, then (2.4) also holds.

For the case of A = 0, we have the following results.

Theorem 2.4. With x,y € R, power index t > 0 and the normalizing constants ¢, and d,, given by (1.7).
For p, € (0,1],

(i) if pn =1, we have

. n 1 .
lim (logn)A(F) 4, Ho;cn,dn;x,y) = i,u(mm(x,y))Ho(m,y)7 (2.5)

n—oo

(ii) if pn € (0,1) and lim,, o b8 (1 — p,) = ¢1 € [0,00), then (2.5) also holds.

Theorems 2.3-2.4 show that convergence rates of (2.2) are the same order of 1/logn if we choose the
normalizing constants ¢, and d,, given by (1.7). With another pair of normalizing constants ¢}, and d, given
by (1.8), the following results show that convergence rates of (2.2) can be improved. Theorem 2.5 stated
below is for the case of A = oo.

Theorem 2.5. With all x,y € R, power index t = 2 and the normalizing constants ¢!, and d?, given by (1.8).
For p, € [-1,1),

(i) if pn € [-1,0], we have

Tim (10g )2 A(Fp, o, Hooi ey dii ) = 7 (1) + () Hool, ), (2.6)

(ii) if pn € (0,1) and limy, 0 bglz)lgi_b;n) =0, then (2.6) also holds.

For the case of A = 0, we have the following results.
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Theorem 2.6. With all z,y € R, power index t = 2 and normalizing constants ¢, and d}, given by (1.8). For
€ (0,1],

(i) if pn = 1, we have

nli_)n;(}(log n)QA(F;Lm2,H0,cn,di y) = %V(min(a:,y))Ho(a:,y), (2.7)
(ii) if pn € (0,1) and lim,, o0 b24(1 — p,) = c2 € [0,00), then (2.7) also holds.
3. Auxiliary lemmas

For notational simplicity, let

Wt (x) = (cnz +dp)/t for >0, and Wy, o(7) = (cpx + d)Y? as t=2, (3.1)

where the normalizing constants ¢,, and d,,, and ¢, and d}, are those given by (1.7) and (1.8), respectively.
Define

and

;) e 2kdz, k=0,1,2. (3.2)

Yy

Lemma 3.1. Under the conditions of Theorem 2.1, we have

lim P (Mnl < wp (), My < wn,t(y)) = Hy(z,y). (3.3)

n—oo

Proof. With the choice of ¢, and d,, in (1.7), it follows from (3.1) that
1/t -2 1-1 27 —4 -6
wpt(2) = (cnz+dy) /" =bp | 1+ 2b,° + —5? b, "+ 0(,°)

for fixed z, hence for fixed z and z,

wn,t(x) - pnwn,t(z)
V1=rp;
1—pp Tr—z z [1—p, 1—t)(z% = 22 1—-t)22 [1—p, 1—pp
Pn g P (1= ), ( 3)\/ p+\/ Pr (b=
L+pn  by/1—p2 bV 1+p, 203 /1 7p% 263 14 pn 1+ pn
1

(e 5 (1 0 ) 3 O o) (1) e

n n

which implies that

lim wn,t(T) — Prwn,t(2) = A+ Tz (3.5)

w12 2

holds since \,, — A as n — oo.
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With a,, = 1/b,, it follows from (3.5) that

TL]P(X > wn,t(x),Y > wn,t(y))

— / b (“ntl®) Z oz ) 4y
\/l_p%
"-’n,t(y)

o0

_ by, (1—b;2+0(b;4)>_1/¢' (wn t(l‘>_pnwn,t(z)> (p(b (1+t2a )l/t)d(b (1+tza )l/t)

<p(bn) \/ 1-— p%

Y

Oo_ 2
= (1+b;2+0(b;4))/<1> (“’"’t(‘”) ”"w“ >exp 2 (1- (1 +tzal )2“)> (1+tza2)' /'~ dz
Y

—>/ ()\+x—z) e “dz

— oY -z _ & —YN -y Yy—r\ _,
e V+te ( ) >e (I><)\—|— ) )e (3.6)

as n — oco. Meanwhile, one can check that

lim @, (x) =e " (3.7)

n—oo

It follows from (3.6) and (3.7) that
P (M1 < wni(2), Mpa < wni(y))
=exp | — D (7) — P i(y) + NP (X > wnp(2),Y > wni(y) + 0(1)}
— Hy(x,y)
as n — 00. The desired result follows. O

The following result is useful in the proof of Lemma 3.3.

Lemma 3.2. With a,, = 1/b,,, for large n we have

oo

/<I> <wn,t(x) —;_pnp(';)nt(z)> exp (bjl (1 — (14 tza )Q/t)) (1+tza )1/t Ldz

— /q> (“’"’t(””) _ p““"v*”) (1 + ((1 . 5 tz2> b;2> e~*dz + O(b, ). (3.8)

Y

V1-p3

Y

Proof. First note that for large n and |z| <

4(4+t)
b2 ) 1 2—t
O (4 _ Jt Y a o 2
exp(2 (1 (1 + tza?) )) (1 + txa?) —e <1+b% ((1 t)x 5 JI))‘
< b, *s(x) exp ( T+ %) (3.9)

where a,, = 1/b,, and s(z) > 0 is a polynomial on x independent of n, cf. Lemma 3.2 in [13].
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Tt follows from (3.9) that

4 log by,

/

_ 2
i) Wn,t(2) — prne(2) exp (b—" (1 -1+ tzai)z/t)> (1+ tzai)l/tfl
V1-p3 2

— 9 _
—P Wnt(T) — pntnt(2) e (1402 (1 —t)z— —tz2 dz
V1-02 2
4 log by,
<b* / s(z) exp (_??Tz) dz
Y
=04 (3.10)
and
9 _
e? (1 + 0,2 (|1 —tlz+ 2=1 5 t22>> dz
4 log by,

ge*Qlogbn<1+b;2(4|17t|logbn+8\27t|(10gbn)2)) / e 2dz

4 log b,
- 2b;4(1 + b2 (411 — t[1og b, + 812 — t] (log by,)?) )
=0(b;"). (3.11)
So, the remainder is to show
A, = / exp (5" (1 -1+ tzai)%)) (1 +tza?)Y*Ydz = O(b;*) (3.12)
4 log by,
for large n. We check (3.12) in turn for 0 <t < 1 and ¢ > 1.
For 0 <t < 1, separate A,, into the following two parts.
2(%_1)1)?7, 2
b
Ap = / exp (7” (1 —(1+ tzai)wt)) (14 tza?)Vt 1z
4 log by,
2(%_1)1)?7,
< e (14201 —t)7 'dz
4 log by,
=0(b*) (3.13)

2
since exp (%" (1—(1+ tza%)Q/t)) < e~ #. For the second part,

o0

2
Apz = / exp <b2n (1 —(1+ tzai)z/t)> (14 tza?)V* 14z
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o0 1 1/t—1
= / ez (1 T ) *
2(1/6—1)b2 "

1/t—1
< (ta?)Y (14 ! / e * 21z
n 2(1—1t)
2(1/t=1)b3,

=2(3— 2t)1/t—1e—2(1/t—1)bi

I
)
—
S
W~
~—

(3.14)

Hence, (3.13) and (3.14) shows that (3.12) holds as 0 < ¢ < 1.
Now switch to the case of ¢t > 1. By Mills’ inequality, we have

Pom BO+E ) e\
A, = / exp (7> exp <_f (1 + E) dz
4 log by,

oo

b2 2

=b,, exp (5") / exp <—%) ds

b, <1+44t 1;: M)m

% 4tlog by \ V!
= /27b,, exp (;”) (1 ) (bn (1 + %)

2/t
exp (% <1 - (1 + —4“53%1’“) )>
1/t
(1 + 4tllt))2gbn>

exp <f4log bn + 8(t=2)(log bn) b")2)

b3

1/t
(1 LA 1;))2g by )

<

<

=0(b;,")

2

since (1+ )% > 1+ 2s+1(2-1)s? for s > 0. The claimed result (3.12) follows as t > 1.
Combining (3.10)—(3.12), the proof of (3.8) is complete. O

In order to show the second order asymptotic expansions of extreme value distributions, let
A(F?

Pnyt? H)\; Cn, dn;x7 y) = IP)(]\4711 S wn,t(x)aMnZ S wn,t(y)) - H)\(.T,’, y)

Lemma 3.3. Assume that the conditions of Theorem 2.2 hold. Then,

< 1
lim (log n)A(F;ln,tv Hy;cnydns,y) = 57—(&3 Az, y ) Ha(z,y), (3.15)

n—oo

where T(a, A\, z,y,t) is given by Theorem 2.2.

Proof. By (3.6) and (3.8), we have



W. Zhou, Z. Peng / J. Math. Anal. Appl. 455 (2017) 923-938 931

n[P’(X > OJmt(l'),Y > Wmt(y))

= Bnaly) - /q) (wn’t(%"’t(zv e (1 + ((1 L) 2

for large n. It follows from (3.4) and (3.5) that

tf) b,f) dz + O(b, )

oo

5 =2  wnp(x) = pawn,i(2) T—z\ _,
bn/</\+ o\ i @A+ o )€ dz

Y

1, 1 .., 1 1—t 3001 ., 1—t
— (a 2)\ 2a)\ T 4)\9[; o T >IO (4)\ 2a)\ I + By I
= k1(oo M 2,3, 1) (3.16)
as n — oo, where I, is given by (3.2) and

Hl (a7 A’ x? y’ t)

- 2((2 SN S (2 )N+ (1 — t)/\2)(f> (A + %) e

+<2a —(5—20N + (1 — Az + (1 — t))\y)cp ()\ + %) e?.

Note that by Taylor’s expansion with Lagrange remainder term,

NEREENEY

V1-p;
A S A e B e T
2 ) ¥ 2 JI—p2 2
2
1 n - Fn%n -
o) (Entl) D) 2 —2) (3.17)
2 V1—p2 2\
where v, is between %\/%‘g"*‘(z) and A 4 Z5Z. By arguments similar to (3.16), one can check that
oo 2
/ Wn,t (T) — ppwn ¢(2) -tz vpo(vn)e dz = O(b,*) (3.18)
V1-=p2 2\
y

holds for large n. Hence from (3.16), (3.17) and (3.18), it follows that

lim bi/ @ ()\+ ﬂ) P G Rl K1 GO N S RN 3.19
n—yoo ( 2\ N 1( y:t) (3.19)

Y

Note that
i)n,t(m) =e 7 — b;zu(x) + O(b;4), (3.20)

cf. Theorem 1 in [3]. Now combining (3.6), (3.19) and (3.20), we have
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B2 [P (Mt < wn0(2), Maz < wns(y)) — Ha(,9)]

= by Hx(z,y)(1 +0(1)) l = @ p(2) = Pra(y) + nPX > wne(2),Y > wie(y))

.’L'_y -y y_x —x
+<I>()\+—2)\ )e +<I><)\+ 3\ )e

o0

= b2 Hy(z,y)(1 + 0(1))[— O, 4(z) +e " +/<1> < 2;) e *dz

Yy

/Oocp <°"” t : f’:j:” M) e * (1 + ((1 )z — 2;@) b,f) dz + O(b*)

— H)\(xa y) |:,U,(£L‘) + [il(aa )‘a xvyat) - K?(aa )‘a 5379’75)}
= H)\(xay)T(av)‘vxuyat)

as n — 0o, where

"62(0[’ )‘u z,Y, t)

_oo z\ _, L 2ty
—/@()\—i— 2)\>e ((1 t)z 5 z)dz
_ (2t YU\ _y

= <—2 y+y+1><1>( 2/\)6

2_ T -
T (2(2 — A =22 = ) r +2(1 = )N + Ttx2 +z+ 1) o ()\ + 2)\x> e ”

<

—(2(2 SN - (2= A+ y) — 2)\><p </\ + %) e
and 7(a, A, x,y,t) is given by Theorem 2.2. The proof is complete. O

Lemma 3.4. Let the normalizing constants ¢, and d,, be given by (1.7). For p, € [-1,1),

(i) if pn € [-1,0], we have

tim (g m)A(F. 1, Hoe; s 2,9) = 5 () + (0)) Ho ., (3.21)

n—oo

(i) if pn € (0,1) and lim, bzlg)lgbp 5 = 0, then (3.21) also holds.

Proof. (i). Note that complete independence (p,, = 0) and complete negative dependence (p, = —1) imply
A = o0. It follows from (3.20) that both

by, (—n( 1(Wn i (@), wn i (y) + €Y +e77)
=b ( ) + b2 ( D, (y) + e_y) +nbZ P(wn i (7) < X < —wni(y))
— p(z) + u(y) (3.22)

2
n
2
n
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and

02 (~n(L = Fo(wn (@) i) + e ¥ +¢7)

B (=B (0) 4 )+ B (—Bpaly) +eY) + 2 B, ()80

— (@) + uy) (3.23)

hold as n — oo, showing that the claimed results (3.21) hold for p,, = —1 and p,, = 0 respectively. Thus, it
follows from Slepian’s Lemma that (3.21) also holds for p,, € [—1,0].
(ii). Obviously, lim,, bzlz)ig bp 5 = 0 implies limy, o Ay = 00. Hence, for fixed z,z € R, one can check

that

lim Cntl®) = panelz) (3.24)

nto0 Ny

By (3.24) and Mills’ inequality,

Wn t(w) — PrWn,t(2)
b4 ) ) )
e (=)

b} exp (_ (@Wn.t () =prwn.i(2))? )

2(1-p2)
< Wn,t(x)_pnwn,t(z)
Vi-p2
oz 1/t c 2 1/t42
exp (7(( n@+dn) 2(1&)(%)" +dn) 7) +4logbn)
= (cnz+dn)/t—py(cnz+dny)t/t
V1-p2
-1
L—pn r—z z 1 —pn (1—t)(l‘ — Pn? ) 1—pn -5
= (b + + = + o(b;,
< 1+ pn bn, 1—p% b V 14 py 2b%\/ —pn 1+ p, ( )
< e b%(l - pn) (.’L‘ - pnz>2 (1 - t)2($2 - pnz2)2 T — pPnc (1 - t)(CL‘ — Pn® )
< [ — _ _ _
P\ 200+ pn) 2201 42) 8U5.(1— p2) 1+ . 262 (1+ pn)
(# = pu2)(1 = t)(&® = puz®) | 1—py =5
— o 4log b,
2W1(1— 2) 215 p) ) 08
—z=z b2 (1—pn) < 8(1 + pn) log by (1+ pn) 10gb2(1 _pn)>}
< (I1+o0(1 2 -z 1-— + n
(el e =50 ,) B~ pn) 81— pn)
—0 (3.25)
as n — oo. Note that
= bn, _ _
n~t=d(b,) = %&1 — 0,24+ O(b;1)). (3.26)
Hence, by (3.10)—(3.12) and (3.26), we have
nP(X > wp(2),Y > wni(y))
T n, - PnWn b2
= b1 b2+ 1/b P(Lnt mf/lpii 2 e (7” (1 — (1+tza? )Q/t)> (1+ tza2)/t"1dz
— Pn

=0(b;"). (3.27)
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It follows from (3.20) and (3.27) that

02 (@ o). 0n.e(y)) — Hool2,9)
— 02 Hoo (2, ) (1 + o(1 [ Fy, (Wt (2), wna(y))) + 7 +e—y}
= b2 Hoo(, ) (1 + 0(1)) | = (77 + €7 = b2 ((x) + ply) + O(;2))) + ¢ + 7]
= Hoo(a,y [ }
as n — co. The proof is complete. 0

Lemma 3.5. Let the normalizing constants ¢, and d,, be given by (1.7). For p, € (0,1],

(i) if pn =1, we have

lim (logn)A(F™

n—»00 pnst?

1 .
Ho: e, dni 2, y) = 540 min(a, ) Ho(w. y), (3.28)
(ii) if pn € (0,1) and lim,, o, b5 (1 — p,) = ¢1 € [0,00), then (3.28) also holds.

Proof. (i). Note that the complete positive dependent case p,, = 1 implies A = 0. It follows from (3.20) that

By (min(z,y)) + ¢~ ™0 | p(min(z, y))
(3.29)

b2 = (1 = Fi(wna(a),wna(y))) + e 00| = p2 ] -

as n — oo. It follows from (3.29) that (3.28) holds as p, = 1.
(ii). Without loss of generality, assume that y < z € R. For max(z,y) = x < z < 4logb,, we have

P Wn,t(y) - pnwn,t(z)
V1-pi

(W7L,t(y)7pnwn,t(z) )
U VA

Wi, t (Y) = Pnwn,t(2)
1-p7

<_

exp <_% (et 52) (1t o(l)))

(ha 52 (14 Ot — 3 — B 1 0,0007) (1 - )

IN

n

exp| -1 (N, = ’ 0
e Q(A_+ =) (1+o) .
S+ o(1)

Wit (Y) —pnwn,t(2)

i) < 0 for large n when

for large n due to ®(—z) = ®(x) and Mills’ inequality since
00). Therefore,

lim,, 00 b (1 — pn) = ¢1 € [0,

4log by,

@ (“’n,t(y) 1_Pnp¢;)n,t(2)> exp (% (1 — (1+tza )2”)> (1+tza2)Y/t"1dz

x
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4log b 5 9
2\, A — — _ 1
< (o) / exp (—7” Y > - (ySA? — 24 obrY) + <Z - 1) log(1 +tza3)> dz
2 _ 2 o n
exp (_>‘_n -%- (ys)\ﬁg) ) 4logb
=2X(1+0(1)) z exp (f—) dz
r—y
2 Ry
Db (1 + o(1)) s <_% —5 s )
< AMb2(1 4 o(1)) —
= 0% (3.31)
for large n by lim,, . b% (1 — p,,) = c;. It follows from (3.12) that
F 2 b2
/ o ((wm(y) _1_p"w2"’t(z)) ) exp (En ( — (1 +tza )2/f>> (14 tza2)Y*"tdz
4log b, ~ P
7 by 2/t 1/t-1
< exp —(17(1+tza) ) (1+tza?) dz
4 log by,
= 0(bh). (3.32)

Combining (3.20), (3.31) and (3.32), for y < 2 we have

1-F,, (wnyt(min(ac, Y)), wn ¢ (max(z, y)))
= B () + Pua) ~ P (X > wna(p), Y > wn (@)
(

= @ t(y) + P t(2)

? 2
/ wnt(y) = prne(2) exp (b—” (1 -1+ tzaiﬁ)) (1+tza?)t 'dz
1 —pn 2

Bi(y) +n 1 —b2+ 0B !

o0

. W b2 1_
X/ Wnt(Y) = prwn.i(2) exp (_n (1_(1+t2a3)3)>(1+tzai)t 1z
1*pn 2

=n"' (e = b, uly) + 00, ")

for large n, which implies the desired result. The proof is complete. 0O

Lemma 3.6. With power index t = 2, and the normalizing constants ¢, and d¥ given by (1.8). For p, €

[_171)7

(i) if pn, € [-1,0], we have

. R . 1
Tim (logn)2A(F}, 5, Hoos 5, dii 2, ) = Z(V(x)—i—u(y))Hoo(x,y), (3.33)

(i) if pn € (0,1) and lim, bzlagf;n) =0, then (3.33) also holds.
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Proof. (i). Note that
D o(z) =e % — b v(x) + O, %) (3.34)
derived by Theorem 1 in [3]. It follows from (3.34) that
b (—n(1 = Foy(w), o(2), w5 2(1))) + e +e77) = w(z) +v(y)
as n — oo if p, = —1, and
by (—n(1 = Fo(wy 5(x),wy (1)) + 7% +e77) = v(2) + v(y)

also holds as n — oo if p,, = 0. Therefore, (3.33) holds for p, = —1 and p,, = 0 respectively. By Slepian’s

Lemma, (3.33) also holds for p,, € [-1,0].
log by,
b2 (1—pn)

(ii). Obviously, lim, = 0 implies lim,, o, A;, = 0c0. Hence, for fixed z and z,

W:L,z(x) - inZ,Q(Z)

V1-pi

as n — co. By arguments similar to (3.25), we have

6 w;,2($) - inz,z(z)
b, (1@( m >> —0 (3.35)

— 0

as n — oo. It follows from (3.26) and (3.35) that

P(X > wy, o(2),Y > w;, 5(y))

1y -2 —4 r _ Wn,2(37)_Pan,2(y)
— 014 b2+ O ))/bg (1 o L ))

xexp (<2 -+ (1+2)a2) (1 - a2) (142 (s = (14 2)a2) a2) * d2
— O(n~ ;%)

Y

for large n. Hence,
ba [ P (w3 2(2), 05 2(0) = Hool@,9)| = Hoo(w,9) [v(@) + ()]
as n — 0o. The proof is complete. O
Lemma 3.7. With power index t = 2, and the normalizing constants ¢}, and d}, given by (1.8). For p,, € (0,1],

(i) if pn =1, we have

~ 1
lim (logn)QA(Fp"mg,Ho;cfl,dfl;x,y) = ZV(min(w,y))Ho(x,y), (3.36)

n—oo

(ii) 4f pn € (0,1) and lim,, oo b1 (1 — p,) = c2 € [0,00), then (3.36) also holds.
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Proof. (i). For the complete positive dependent case p,, = 1, without loss of generality, assume that y < x.
It follows from (3.34) that

bi] = n(1 = Fi(w; oe), ) 2) + 7] = w(y)

as n — oo. The desired result (3.36) follows as p, = 1.
(ii). By arguments similar to that of (3.31) and (3.32), for fixed y < z € R we have

/<I> (W:z,z(?/\)/%n’Q(z)) exp(—z + (14 2)a}) 11206 1(1 i”z)a%)a%)% dz = O(b,°) (3.37)

x

for large n by lim,, . b14(1 — p,,) = ca. Combining (3.34) with (3.37), we have

1-F,, (W;,Q(x), W:Lz(y))
= @na(y) +n7 (1 by + OB H) 7

[ (@) = pwna)\ ) -
/ q)( Vi-7 )exp( T T T P

=n"' (e = b, w(y) + 0b,°))

W=

for large n, which implies the desired result. The proof is complete. 0O
4. Proofs
Proof of Theorem 2.1. Obviously,

P (|Mn1|t S CnT + dru |Mn2|t S CnlY + dn)

= Fp i(wn (@), 0n i (Y) = Fp 1(wn,i(2), —wn, e () = F7 (=wn,t(2) wn,t(y)) + Fp o (=wn (2), —wn,(y))-

Note that
Fp (wni(@), —wne(y) + F (—wn (@), wne(y) — F o (—wn (@), —wn i (y))
SP (M2 < —wn(y)) + P (Mn1 < —wn(2)) — min{@" (—wp i (2)), " (—wn,e(y))}
=" (—wn () + " (—wn(y)) — min{@" (—wn i (2)), 2" (—wn,i(y))}
— ob,") (4.1)

" (—wne(w)) = (07 (1 O(0,7)) " = 0l(by ),
cf. Lemma 3.1 in [17]. Combining (4.1) with Lemma 3.1, we can get the desired result (2.1). O
Proof of Theorem 2.2. It follows from (4.1) and Lemma 3.3 that

A(F"

p",taH/\;cnadn;xay) = A(F;:L",thk;cnvdn;x7y) + O(b;4>a

so the result (2.3) is obtained. O
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Proof of Theorem 2.3 and Theorem 2.4. It follows from (4.1), Lemma 3.4 and Lemma 3.5, respectively. O
Proof of Theorem 2.5 and Theorem 2.6. By arguments similar to the proof of Theorem 2.1, we have

A(F:n,%H)\; C:Hd;kl; xay) = A(F;;Ln,% H)\; CZ7dz;xay) + O(b;6)7

so the desired results follow from Lemma 3.6 and Lemma 3.7, respectively. O
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