

Contents lists available at ScienceDirect

Journal of Mathematical Analysis and Applications

www.elsevier.com/locate/jmaa

Asymptotic behavior of bivariate Gaussian powered extremes

Wei Zhou, Zuoxiang Peng*

School of Mathematics and Statistics, Southwest University, Chongqing, 400715, China

ARTICLE INFO

Article history: Received 9 November 2016 Available online 12 June 2017 Submitted by V. Pozdnyakov

Keywords: Hüsler–Reiss max-stable distribution Bivariate powered Gaussian maximum Second-order expansion

ABSTRACT

In this paper, joint asymptotics of powered maxima for a triangular array of bivariate Gaussian random vectors are considered. Under the Hüsler–Reiss condition, limiting distributions of powered maxima are derived. Furthermore, the second-order expansions of the joint distributions of powered maxima are established under the refined Hüsler–Reiss condition.

© 2017 Elsevier Inc. All rights reserved.

1. Introduction

For independent and identically distributed bivariate Gaussian random vectors with constant coefficient in each vector, Sibuya [16] showed that componentwise maxima are asymptotically independent, and Embrechts et al. [1] proved the asymptotical independence in the upper tail. To overcome those shortcomings in its applications, Hüsler and Reiss [11] considered the asymptotic behaviors of extremes of Gaussian triangular arrays with varying coefficients. Precisely, let $\{(X_{ni}, Y_{ni}), 1 \leq i \leq n, n \geq 1\}$ be a triangular array of independent bivariate Gaussian random vectors with $EX_{ni} = EY_{ni} = 0$, $Var X_{ni} = Var Y_{ni} = 1$ for $1 \leq i \leq n, n \geq 1$. and $Cov(X_{ni}, Y_{ni}) = \rho_n$. Let $F_{\rho_n}(x, y)$ denote the joint distribution of vector (X_{ni}, Y_{ni}) for $i \leq n$. The partial maxima M_n is defined by

$$M_n = (M_{n1}, M_{n2}) = (\max_{1 \le i \le n} X_{ni}, \max_{1 \le i \le n} Y_{ni}).$$

Hüsler and Reiss [11] and Kabluchko et al. [12] showed that

$$\lim_{n \to \infty} \mathbb{P}\left(M_{n1} \le b_n + \frac{x}{b_n}, M_{n2} \le b_n + \frac{y}{b_n}\right) = H_{\lambda}(x, y) \tag{1.1}$$

holds if and only if the following Hüsler-Reiss condition

^{*} Corresponding author.

E-mail address: pzx@swu.edu.cn (Z. Peng).

$$\lim_{n \to \infty} b_n^2 (1 - \rho_n) = 2\lambda^2 \in [0, \infty]$$
 (1.2)

holds, where the normalizing constant b_n is the solution of the equation

$$1 - \Phi(b_n) = n^{-1} \tag{1.3}$$

and the max-stable Hüsler–Reiss distribution is given by

$$H_{\lambda}(x,y) = \exp\left(-\Phi\left(\lambda + \frac{x-y}{2\lambda}\right)e^{-y} - \Phi\left(\lambda + \frac{y-x}{2\lambda}\right)e^{-x}\right), \quad x, y \in \mathbb{R},$$
(1.4)

where $\Phi(\cdot)$ denotes the distribution function of a standard Gaussian random variable. Note that $H_0(x,y) = \Lambda(\min(x,y))$ and $H_{\infty}(x,y) = \Lambda(x)\Lambda(y)$ with $\Lambda(x) = \exp(-\exp(-x))$, $x \in \mathbb{R}$.

Recently, contributions to Hüsler–Reiss distribution and its extensions are achieved considerably. For instance, Hashorva [4,5] showed that the limit distributions of maxima also hold for triangular arrays of general bivariate elliptical distributions if the distribution of random radius is in the Gumbel or Weibull max-domain of attraction, and Hashorva and Ling [9] extended the results to bivariate skew elliptical triangular arrays. For more work on asymptotics of bivariate triangular arrays, see [6–8].

Higher-order expansions of distributions of extremes on Hüsler–Reiss bivariate Gaussian triangular arrays were considered firstly by Hashorva et al. [10] provided that ρ_n satisfies the following refined Hüsler–Reiss condition

$$\lim_{n \to \infty} b_n^2(\lambda_n - \lambda) = \alpha \in \mathbb{R},\tag{1.5}$$

where $\lambda_n = (\frac{1}{2}b_n^2(1-\rho_n))^{1/2}$ and $\lambda \in (0,\infty)$, with b_n given by (1.3). Uniform convergence rate was considered by Liao and Peng [14]. For copula version of the limit in Hüsler–Reiss model, Frick and Reiss [2] considered the penultimate and ultimate convergence rates for distribution of $(n(\max_{1\leq i\leq n}\Phi(X_{ni})-1), n((\max_{1\leq i\leq n}\Phi(Y_{ni})-1)))$, and Liao et al. [15] extended the results to the settings of n independent and non-identically distributed observations, where the ith observation follows from normal copula with correlation coefficient being either a parametric or a nonparametric function of i/n.

The objective of this paper is to study the asymptotics of powered-extremes of Hüsler–Reiss bivariate Gaussian triangular arrays. Interesting results in [3] showed that the convergence rates of the distributions of powered-extremes of independent and identically distributed univariate Gaussian sequence depend on the power index and normalizing constants. Precisely, let $|M_n|^t$ denote the powered maximum with any power index t > 0, then

$$\lim_{n \to \infty} b_n^2 \left[\mathbb{P}\left(\left| M_n \right|^t \le c_n x + d_n \right) - \Lambda(x) \right] = \Lambda(x) \mu(x)$$
(1.6)

with normalizing constants c_n and d_n given by

$$c_n = tb_n^{t-2}, \quad d_n = b_n^t, \quad t > 0.$$
 (1.7)

Furthermore, for t=2 with normalizing constants c_n^* and d_n^* given by

$$c_n^* = 2 - 2b_n^{-2}, \quad d_n^* = b_n^2 - 2b_n^{-2},$$
 (1.8)

we have

$$\lim_{n \to \infty} b_n^4 \left[\mathbb{P}\left(\left| M_n \right|^2 \le c_n^* x + d_n^* \right) - \Lambda(x) \right] = \Lambda(x) \nu(x), \tag{1.9}$$

where b_n is defined by (1.3), and $\mu(x)$ and $\nu(x)$ are respectively given by

$$\mu(x) = \left(1 + x + \frac{2-t}{2}x^2\right)e^{-x}, \quad \nu(x) = -\left(\frac{7}{2} + 3x + x^2\right)e^{-x}.$$
 (1.10)

Motivated by findings of Hüsler–Reiss [11], Hall [3] and Hashorva et al. [10], we will consider the distributional asymptotics of powered-extremes of Hüsler–Reiss bivariate Gaussian triangular arrays, and hope that the convergence rates can be improved as t=2, similar to (1.9) in univariate case. Unfortunately, our results provide negative answers except two extreme cases.

The rest of the paper is organized as follows. In Section 2 we provide the main results and all proofs are deferred to Section 4. Some auxiliary results are given in Section 3.

2. Main results

In this section, the limiting distributions and the second-order expansions on distributions of normalized bivariate powered-extremes are provided if ρ_n satisfies (1.2) and (1.5), respectively. The first main result, stated as follows, is the limit distribution of bivariate normalized powered-extremes.

Theorem 2.1. If the Hüsler–Reiss condition (1.2) holds with $\lambda \in (0, \infty)$, then for all $x, y \in \mathbb{R}$, we have

$$\lim_{n \to \infty} \mathbb{P}\left(|M_{n1}|^t \le c_n x + d_n, |M_{n2}|^t \le c_n y + d_n \right) = H_{\lambda}(x, y), \tag{2.1}$$

where the normalizing constants c_n and d_n are given by (1.7).

Remark 2.1. For t = 2, with arguments similar to the proof of Theorem 2.1 one can show that (2.1) also holds with c_n and d_n being replaced by c_n^* and d_n^* given by (1.8).

Next we investigate the convergence rate of

$$\Delta(F_{\rho_n,t}^n, H_{\lambda}; c_n, d_n; x, y) = \mathbb{P}\left(|M_{n1}|^t \le c_n x + d_n, |M_{n2}|^t \le c_n y + d_n\right) - H_{\lambda}(x, y) \to 0$$
 (2.2)

as $n \to \infty$ under the refined second-order Hüsler–Reiss condition (1.5).

Theorem 2.2. If the second-order Hüsler–Reiss condition (1.5) holds with $\lambda_n = (\frac{1}{2}b_n^2(1-\rho_n))^{1/2}$ and $\lambda \in (0,\infty)$, then for all $x,y \in \mathbb{R}$, we have

$$\lim_{n \to \infty} (\log n) \Delta(F_{\rho_n, t}^n, H_\lambda; c_n, d_n; x, y) = \frac{1}{2} \tau(\alpha, \lambda, x, y, t) H_\lambda(x, y)$$
(2.3)

with

$$\tau(\alpha,\lambda,x,y,t) = \mu(x)\Phi\left(\lambda + \frac{y-x}{2\lambda}\right) + \mu(y)\Phi\left(\lambda + \frac{x-y}{2\lambda}\right) + \left(2\alpha - (x+y+2)\lambda - \lambda^3\right)e^{-x}\varphi\left(\lambda + \frac{y-x}{2\lambda}\right),$$

where $\varphi(\cdot)$ denotes the density function of a standard Gaussian random variable and $\mu(x)$ is given by (1.10).

Remark 2.2. For t=2, let c_n and d_n be replaced by c_n^* and d_n^* respectively in (1.8), one can show that

$$\lim_{n \to \infty} (\log n) \Delta(F_{\rho_n,2}^n, H_{\lambda}; c_n^*, d_n^*; x, y) = \frac{1}{2} \chi(\alpha, \lambda, x, y) H_{\lambda}(x, y)$$

with

$$\chi(\alpha, \lambda, x, y) = \left(2\alpha - (x + y + 2)\lambda - \lambda^3\right)e^{-x}\varphi\left(\lambda + \frac{y - x}{2\lambda}\right).$$

The result shows the fact that the convergence rates can not be improved as t=2 with normalizing constants c_n^* and d_n^* , contrary to the result of univariate Gaussian case provided by Hall [3].

In order to obtain the convergence rates of (2.2) for two extreme cases $\lambda = 0$ and $\lambda = \infty$, we need some additional conditions. The following results show that rates of convergence are considerably different with different choice of normalizing constants. For the case of $\lambda = \infty$, with normalizing constants c_n and d_n given by (1.7) we have the following results.

Theorem 2.3. With all $x, y \in \mathbb{R}$, power index t > 0 and the normalizing constants c_n and d_n given by (1.7). For $\rho_n \in [-1, 1)$,

(i) if $\rho_n \in [-1, 0]$, we have

$$\lim_{n \to \infty} (\log n) \Delta(F_{\rho_n, t}^n, H_\infty; c_n, d_n; x, y) = \frac{1}{2} \Big(\mu(x) + \mu(y) \Big) H_\infty(x, y), \tag{2.4}$$

(ii) if $\rho_n \in (0,1)$ and $\lim_{n\to\infty} \frac{\log b_n}{b_n^2(1-\rho_n)} = 0$, then (2.4) also holds.

For the case of $\lambda = 0$, we have the following results.

Theorem 2.4. With $x, y \in \mathbb{R}$, power index t > 0 and the normalizing constants c_n and d_n given by (1.7). For $\rho_n \in (0, 1]$,

(i) if $\rho_n \equiv 1$, we have

$$\lim_{n \to \infty} (\log n) \Delta(F_{\rho_n, t}^n, H_0; c_n, d_n; x, y) = \frac{1}{2} \mu \Big(\min(x, y) \Big) H_0(x, y), \tag{2.5}$$

(ii) if $\rho_n \in (0,1)$ and $\lim_{n\to\infty} b_n^6(1-\rho_n) = c_1 \in [0,\infty)$, then (2.5) also holds.

Theorems 2.3–2.4 show that convergence rates of (2.2) are the same order of $1/\log n$ if we choose the normalizing constants c_n and d_n given by (1.7). With another pair of normalizing constants c_n^* and d_n^* given by (1.8), the following results show that convergence rates of (2.2) can be improved. Theorem 2.5 stated below is for the case of $\lambda = \infty$.

Theorem 2.5. With all $x, y \in \mathbb{R}$, power index t = 2 and the normalizing constants c_n^* and d_n^* given by (1.8). For $\rho_n \in [-1, 1)$,

(i) if $\rho_n \in [-1,0]$, we have

$$\lim_{n \to \infty} (\log n)^2 \Delta(F_{\rho_n,2}^n, H_\infty; c_n^*, d_n^*; x, y) = \frac{1}{4} \Big(\nu(x) + \nu(y) \Big) H_\infty(x, y), \tag{2.6}$$

(ii) if $\rho_n \in (0,1)$ and $\lim_{n\to\infty} \frac{\log b_n}{b_n^2(1-\rho_n)} = 0$, then (2.6) also holds.

For the case of $\lambda = 0$, we have the following results.

Theorem 2.6. With all $x, y \in \mathbb{R}$, power index t = 2 and normalizing constants c_n^* and d_n^* given by (1.8). For $\rho_n \in (0, 1]$,

(i) if $\rho_n \equiv 1$, we have

$$\lim_{n \to \infty} (\log n)^2 \Delta(F_{\rho_n,2}^n, H_0; c_n^*, d_n^*; x, y) = \frac{1}{4} \nu \Big(\min(x, y) \Big) H_0(x, y), \tag{2.7}$$

(ii) if $\rho_n \in (0,1)$ and $\lim_{n\to\infty} b_n^{14}(1-\rho_n) = c_2 \in [0,\infty)$, then (2.7) also holds.

3. Auxiliary lemmas

For notational simplicity, let

$$\omega_{n,t}(x) = (c_n x + d_n)^{1/t}$$
 for $t > 0$, and $\omega_{n,2}^*(x) = (c_n^* x + d_n^*)^{1/2}$ as $t = 2$, (3.1)

where the normalizing constants c_n and d_n , and c_n^* and d_n^* are those given by (1.7) and (1.8), respectively. Define

$$\bar{\Phi}(z) = 1 - \Phi(z), \qquad \bar{\Phi}_{n,t}(z) = n\bar{\Phi}(\omega_{n,t}(z))$$

and

$$I_k := \int_{-\pi}^{\infty} \varphi\left(\lambda + \frac{x - z}{2\lambda}\right) e^{-z} z^k dz, \quad k = 0, 1, 2.$$
(3.2)

Lemma 3.1. Under the conditions of Theorem 2.1, we have

$$\lim_{n \to \infty} \mathbb{P}\left(M_{n1} \le \omega_{n,t}(x), M_{n2} \le \omega_{n,t}(y)\right) = H_{\lambda}(x,y). \tag{3.3}$$

Proof. With the choice of c_n and d_n in (1.7), it follows from (3.1) that

$$\omega_{n,t}(z) = (c_n z + d_n)^{1/t} = b_n \left(1 + zb_n^{-2} + \frac{1 - t}{2} z^2 b_n^{-4} + O(b_n^{-6}) \right)$$

for fixed z, hence for fixed x and z,

$$\frac{\omega_{n,t}(x) - \rho_n \omega_{n,t}(z)}{\sqrt{1 - \rho_n^2}} = b_n \sqrt{\frac{1 - \rho_n}{1 + \rho_n}} + \frac{z}{b_n \sqrt{1 - \rho_n^2}} + \frac{z}{b_n} \sqrt{\frac{1 - \rho_n}{1 + \rho_n}} + \frac{(1 - t)(x^2 - z^2)}{2b_n^3 \sqrt{1 - \rho_n^2}} + \frac{(1 - t)z^2}{2b_n^3} \sqrt{\frac{1 - \rho_n}{1 + \rho_n}} + \sqrt{\frac{1 - \rho_n}{1 + \rho_n}} O(b_n^{-5})$$

$$= \left(\lambda_n + \frac{x - z}{2\lambda_n} \left(1 + \frac{(1 - t)(x + z)}{2b_n^2}\right) + \frac{\lambda_n z}{b_n^2} + \frac{(1 - t)\lambda_n z^2}{2b_n^4} + \lambda_n O(b_n^{-6})\right) \left(1 - \frac{\lambda_n^2}{b_n^2}\right)^{-\frac{1}{2}} \tag{3.4}$$

which implies that

$$\lim_{n \to \infty} \frac{\omega_{n,t}(x) - \rho_n \omega_{n,t}(z)}{\sqrt{1 - \rho_n^2}} = \lambda + \frac{x - z}{2\lambda}$$
(3.5)

holds since $\lambda_n \to \lambda$ as $n \to \infty$.

With $a_n = 1/b_n$ it follows from (3.5) that

$$n \mathbb{P}(X > \omega_{n,t}(x), Y > \omega_{n,t}(y))$$

$$= n \int_{\omega_{n,t}(y)}^{\infty} \bar{\Phi}\left(\frac{\omega_{n,t}(x) - \rho_{n}z}{\sqrt{1 - \rho_{n}^{2}}}\right) d\Phi(z)$$

$$= \frac{b_{n}}{\varphi(b_{n})} (1 - b_{n}^{-2} + O(b_{n}^{-4}))^{-1} \int_{y}^{\infty} \bar{\Phi}\left(\frac{\omega_{n,t}(x) - \rho_{n}\omega_{n,t}(z)}{\sqrt{1 - \rho_{n}^{2}}}\right) \varphi(b_{n}(1 + tza_{n}^{2})^{1/t}) d(b_{n}(1 + tza_{n}^{2})^{1/t})$$

$$= (1 + b_{n}^{-2} + O(b_{n}^{-4})) \int_{y}^{\infty} \bar{\Phi}\left(\frac{\omega_{n,t}(x) - \rho_{n}\omega_{n,t}(z)}{\sqrt{1 - \rho_{n}^{2}}}\right) \exp\left(\frac{b_{n}^{2}}{2}\left(1 - (1 + tza_{n}^{2})^{2/t}\right)\right) (1 + tza_{n}^{2})^{1/t - 1} dz$$

$$\to \int_{y}^{\infty} \bar{\Phi}\left(\lambda + \frac{x - z}{2\lambda}\right) e^{-z} dz$$

$$= e^{-y} + e^{-x} - \Phi\left(\lambda + \frac{x - y}{2\lambda}\right) e^{-y} - \Phi\left(\lambda + \frac{y - x}{2\lambda}\right) e^{-x}$$

$$(3.6)$$

as $n \to \infty$. Meanwhile, one can check that

$$\lim_{n \to \infty} \bar{\Phi}_{n,t}(x) = e^{-x}.$$
(3.7)

It follows from (3.6) and (3.7) that

$$\mathbb{P}\left(M_{n1} \leq \omega_{n,t}(x), M_{n2} \leq \omega_{n,t}(y)\right)$$

$$= \exp\left[-\bar{\Phi}_{n,t}(x) - \bar{\Phi}_{n,t}(y) + n\,\mathbb{P}\left(X > \omega_{n,t}(x), Y > \omega_{n,t}(y)\right) + o(1)\right]$$

$$\to H_{\lambda}(x,y)$$

as $n \to \infty$. The desired result follows. \square

The following result is useful in the proof of Lemma 3.3.

Lemma 3.2. With $a_n = 1/b_n$, for large n we have

$$\int_{y}^{\infty} \Phi\left(\frac{\omega_{n,t}(x) - \rho_{n}\omega_{n,t}(z)}{\sqrt{1 - \rho_{n}^{2}}}\right) \exp\left(\frac{b_{n}^{2}}{2}\left(1 - (1 + tza_{n}^{2})^{2/t}\right)\right) (1 + tza_{n}^{2})^{1/t - 1} dz$$

$$= \int_{y}^{\infty} \Phi\left(\frac{\omega_{n,t}(x) - \rho_{n}\omega_{n,t}(z)}{\sqrt{1 - \rho_{n}^{2}}}\right) \left(1 + \left((1 - t)z - \frac{2 - t}{2}z^{2}\right)b_{n}^{-2}\right) e^{-z} dz + O(b_{n}^{-4}). \tag{3.8}$$

Proof. First note that for large n and $|x| \leq \frac{b_n^2}{4(4+t)}$.

$$\left| \exp\left(\frac{b_n^2}{2} \left(1 - (1 + txa_n^2)^{2/t}\right)\right) (1 + txa_n^2)^{1/t - 1} - e^{-x} \left(1 + \frac{1}{b_n^2} \left((1 - t)x - \frac{2 - t}{2}x^2\right)\right) \right|$$

$$\leq b_n^{-4} s(x) \exp\left(-x + \frac{|x|}{4}\right), \tag{3.9}$$

where $a_n = 1/b_n$ and $s(x) \ge 0$ is a polynomial on x independent of n, cf. Lemma 3.2 in [13].

It follows from (3.9) that

$$\int_{y}^{4 \log b_{n}} \left| \Phi\left(\frac{\omega_{n,t}(x) - \rho_{n}\omega_{n,t}(z)}{\sqrt{1 - \rho_{n}^{2}}}\right) \exp\left(\frac{b_{n}^{2}}{2} \left(1 - (1 + tza_{n}^{2})^{2/t}\right)\right) (1 + tza_{n}^{2})^{1/t - 1} \right.$$

$$-\Phi\left(\frac{\omega_{n,t}(x) - \rho_{n}\omega_{n,t}(z)}{\sqrt{1 - \rho_{n}^{2}}}\right) e^{-z} \left(1 + b_{n}^{-2} \left((1 - t)z - \frac{2 - t}{2}z^{2}\right)\right) \right| dz$$

$$\leq b_{n}^{-4} \int_{y}^{4 \log b_{n}} s(z) \exp\left(-\frac{3z}{4}\right) dz$$

$$= O(b_{n}^{-4}) \tag{3.10}$$

and

$$\int_{4 \log b_{n}}^{\infty} e^{-z} \left(1 + b_{n}^{-2} \left(|1 - t| z + \frac{|2 - t|}{2} z^{2} \right) \right) dz$$

$$\leq e^{-2 \log b_{n}} \left(1 + b_{n}^{-2} \left(4 |1 - t| \log b_{n} + 8 |2 - t| (\log b_{n})^{2} \right) \right) \int_{4 \log b_{n}}^{\infty} e^{-\frac{z}{2}} dz$$

$$= 2b_{n}^{-4} \left(1 + b_{n}^{-2} \left(4 |1 - t| \log b_{n} + 8 |2 - t| (\log b_{n})^{2} \right) \right)$$

$$= O(b_{n}^{-4}). \tag{3.11}$$

So, the remainder is to show

$$A_n = \int_{4 \log b_n}^{\infty} \exp\left(\frac{b_n^2}{2} \left(1 - (1 + tza_n^2)^{2/t}\right)\right) (1 + tza_n^2)^{1/t - 1} dz = O(b_n^{-4})$$
(3.12)

for large n. We check (3.12) in turn for 0 < t < 1 and $t \ge 1$.

For 0 < t < 1, separate A_n into the following two parts.

$$A_{n1} = \int_{4 \log b_n}^{2(\frac{1}{t} - 1)b_n^2} \exp\left(\frac{b_n^2}{2} \left(1 - (1 + tza_n^2)^{2/t}\right)\right) (1 + tza_n^2)^{1/t - 1} dz$$

$$< \int_{4 \log b_n}^{2(\frac{1}{t} - 1)b_n^2} e^{-z} (1 + 2(1 - t))^{\frac{1}{t} - 1} dz$$

$$= O(b_n^{-4})$$
(3.13)

since $\exp\left(\frac{b_n^2}{2}\left(1-(1+tza_n^2)^{2/t}\right)\right) < e^{-z}$. For the second part,

$$A_{n2} = \int_{2(1/t-1)b_n^2}^{\infty} \exp\left(\frac{b_n^2}{2} \left(1 - (1 + tza_n^2)^{2/t}\right)\right) (1 + tza_n^2)^{1/t-1} dz$$

$$< \int_{2(1/t-1)b_n^2}^{\infty} e^{-z} (tza_n^2)^{1/t-1} \left(1 + \frac{1}{tza_n^2}\right)^{1/t-1} dz$$

$$< (ta_n^2)^{1/t-1} \left(1 + \frac{1}{2(1-t)}\right)^{1/t-1} \int_{2(1/t-1)b_n^2}^{\infty} e^{-z} z^{1/t-1} dz$$

$$= 2(3-2t)^{1/t-1} e^{-2(1/t-1)b_n^2}$$

$$= o(b_n^{-4}). \tag{3.14}$$

Hence, (3.13) and (3.14) shows that (3.12) holds as 0 < t < 1.

Now switch to the case of $t \ge 1$. By Mills' inequality, we have

$$A_{n} = \int_{4 \log b_{n}}^{\infty} \exp\left(\frac{b_{n}^{2}}{2}\right) \exp\left(-\frac{b_{n}^{2}(1 + \frac{tz}{b_{n}^{2}})^{2/t}}{2}\right) \left(1 + \frac{tz}{b_{n}^{2}}\right)^{1/t - 1} dz$$

$$= b_{n} \exp\left(\frac{b_{n}^{2}}{2}\right) \int_{b_{n}\left(1 + \frac{4t \log b_{n}}{b_{n}^{2}}\right)^{1/t}}^{\infty} \exp\left(-\frac{s^{2}}{2}\right) ds$$

$$= \sqrt{2\pi}b_{n} \exp\left(\frac{b_{n}^{2}}{2}\right) \left(1 - \Phi\left(b_{n}\left(1 + \frac{4t \log b_{n}}{b_{n}^{2}}\right)^{1/t}\right)\right)$$

$$< \frac{\exp\left(\frac{b_{n}^{2}}{2}\left(1 - \left(1 + \frac{4t \log b_{n}}{b_{n}^{2}}\right)^{2/t}\right)\right)}{\left(1 + \frac{4t \log b_{n}}{b_{n}^{2}}\right)^{1/t}}$$

$$< \frac{\exp\left(-4 \log b_{n} + \frac{8(t - 2)(\log b_{n})^{2}}{b_{n}^{2}}\right)}{\left(1 + \frac{4t \log b_{n}}{b_{n}^{2}}\right)^{1/t}}$$

$$= O(b_{n}^{-4})$$

since $(1+s)^{\frac{2}{t}} \ge 1 + \frac{2}{t}s + \frac{1}{t}\left(\frac{2}{t}-1\right)s^2$ for s > 0. The claimed result (3.12) follows as $t \ge 1$. Combining (3.10)–(3.12), the proof of (3.8) is complete. \square

In order to show the second order asymptotic expansions of extreme value distributions, let

$$\tilde{\Delta}(F_{\rho_n,t}^n, H_{\lambda}; c_n, d_n; x, y) = \mathbb{P}(M_{n1} \le \omega_{n,t}(x), M_{n2} \le \omega_{n,t}(y)) - H_{\lambda}(x, y).$$

Lemma 3.3. Assume that the conditions of Theorem 2.2 hold. Then,

$$\lim_{n \to \infty} (\log n) \tilde{\Delta}(F_{\rho_n, t}^n, H_\lambda; c_n, d_n; x, y) = \frac{1}{2} \tau(\alpha, \lambda, x, y, t) H_\lambda(x, y), \tag{3.15}$$

where $\tau(\alpha, \lambda, x, y, t)$ is given by Theorem 2.2.

Proof. By (3.6) and (3.8), we have

$$n \mathbb{P}(X > \omega_{n,t}(x), Y > \omega_{n,t}(y))$$

$$= \bar{\Phi}_{n,t}(y) - \int_{y}^{\infty} \Phi\left(\frac{\omega_{n,t}(x) - \rho_n \omega_{n,t}(z)}{\sqrt{1 - \rho_n^2}}\right) e^{-z} \left(1 + \left((1 - t)z - \frac{2 - t}{2}z^2\right)b_n^{-2}\right) dz + O(b_n^{-4})$$

for large n. It follows from (3.4) and (3.5) that

$$b_n^2 \int_y^{\infty} \left(\lambda + \frac{x - z}{2\lambda} - \frac{\omega_{n,t}(x) - \rho_n \omega_{n,t}(z)}{\sqrt{1 - \rho_n^2}} \right) \varphi \left(\lambda + \frac{x - z}{2\lambda} \right) e^{-z} dz$$

$$\rightarrow \left(\alpha - \frac{1}{2} \lambda^3 - \frac{1}{2} \alpha \lambda^{-2} x - \frac{1}{4} \lambda x - \frac{1 - t}{4\lambda} x^2 \right) I_0 - \left(\frac{3}{4} \lambda - \frac{1}{2} \alpha \lambda^{-2} \right) I_1 + \frac{1 - t}{4\lambda} I_2$$

$$= \kappa_1(\alpha, \lambda, x, y, t) \tag{3.16}$$

as $n \to \infty$, where I_k is given by (3.2) and

$$\kappa_1(\alpha, \lambda, x, y, t)$$

$$= 2\left((2-t)\lambda^4 - (2-t)\lambda^2 x + (1-t)\lambda^2\right)\bar{\Phi}\left(\lambda + \frac{y-x}{2\lambda}\right)e^{-x}$$

$$+\left(2\alpha - (5-2t)\lambda^3 + (1-t)\lambda x + (1-t)\lambda y\right)\varphi\left(\lambda + \frac{y-x}{2\lambda}\right)e^{-x}.$$

Note that by Taylor's expansion with Lagrange remainder term,

$$\Phi\left(\frac{\omega_{n,t}(x) - \rho_n \omega_{n,t}(z)}{\sqrt{1 - \rho_n^2}}\right)$$

$$= \Phi\left(\lambda + \frac{x - z}{2\lambda}\right) + \varphi\left(\lambda + \frac{x - z}{2\lambda}\right) \left(\frac{\omega_{n,t}(x) - \rho_n \omega_{n,t}(z)}{\sqrt{1 - \rho_n^2}} - \lambda - \frac{x - z}{2\lambda}\right)$$

$$+ \frac{1}{2}v_n \varphi(v_n) \left(\frac{\omega_{n,t}(x) - \rho_n \omega_{n,t}(z)}{\sqrt{1 - \rho_n^2}} - \lambda - \frac{x - z}{2\lambda}\right)^2, \tag{3.17}$$

where v_n is between $\frac{\omega_{n,t}(x)-\rho_n\omega_{n,t}(z)}{\sqrt{1-\rho_n^2}}$ and $\lambda+\frac{x-z}{2\lambda}$. By arguments similar to (3.16), one can check that

$$\int_{u}^{\infty} \left(\frac{\omega_{n,t}(x) - \rho_n \omega_{n,t}(z)}{\sqrt{1 - \rho_n^2}} - \lambda - \frac{x - z}{2\lambda} \right)^2 v_n \varphi(v_n) e^{-z} dz = O(b_n^{-4})$$
(3.18)

holds for large n. Hence from (3.16), (3.17) and (3.18), it follows that

$$\lim_{n \to \infty} b_n^2 \int_{y}^{\infty} \left(\Phi\left(\lambda + \frac{x - z}{2\lambda}\right) - \Phi\left(\frac{\omega_{n,t}(x) - \rho_n \omega_{n,t}(z)}{\sqrt{1 - \rho_n^2}}\right) \right) e^{-z} dz = \kappa_1(\alpha, \lambda, x, y, t). \tag{3.19}$$

Note that

$$\bar{\Phi}_{n,t}(x) = e^{-x} - b_n^{-2}\mu(x) + O(b_n^{-4}), \tag{3.20}$$

cf. Theorem 1 in [3]. Now combining (3.6), (3.19) and (3.20), we have

$$\begin{split} b_n^2 \Big[& \mathbb{P} \left(M_{n1} \leq \omega_{n,t}(x), M_{n2} \leq \omega_{n,t}(y) \right) - H_{\lambda}(x,y) \Big] \\ &= b_n^2 H_{\lambda}(x,y) (1+o(1)) \Bigg[-\bar{\Phi}_{n,t}(x) - \bar{\Phi}_{n,t}(y) + n \, \mathbb{P}(X > \omega_{n,t}(x), Y > \omega_{n,t}(y)) \\ &+ \Phi \left(\lambda + \frac{x-y}{2\lambda} \right) e^{-y} + \Phi \left(\lambda + \frac{y-x}{2\lambda} \right) e^{-x} \Bigg] \\ &= b_n^2 H_{\lambda}(x,y) (1+o(1)) \Bigg[-\bar{\Phi}_{n,t}(x) + e^{-x} + \int_y^{\infty} \Phi \left(\lambda + \frac{x-z}{2\lambda} \right) e^{-z} dz \\ &- \int_y^{\infty} \Phi \left(\frac{\omega_{n,t}(x) - \rho_n \omega_{n,t}(z)}{\sqrt{1-\rho_n^2}} \right) e^{-z} \left(1 + \left((1-t)z - \frac{2-t}{2}z^2 \right) b_n^{-2} \right) dz + O(b_n^{-4}) \Bigg] \\ &\to H_{\lambda}(x,y) \Big[\mu(x) + \kappa_1(\alpha,\lambda,x,y,t) - \kappa_2(\alpha,\lambda,x,y,t) \Big] \\ &= H_{\lambda}(x,y) \tau(\alpha,\lambda,x,y,t) \end{split}$$

as $n \to \infty$, where

$$\begin{split} &\kappa_2(\alpha,\lambda,x,y,t) \\ &= \int\limits_y^\infty \Phi\left(\lambda + \frac{x-z}{2\lambda}\right) e^{-z} \left((1-t)z - \frac{2-t}{2}z^2\right) dz \\ &= -\left(\frac{2-t}{2}y^2 + y + 1\right) \Phi\left(\lambda + \frac{x-y}{2\lambda}\right) e^{-y} \\ &\quad + \left(2(2-t)\lambda^4 - 2(2-t)\lambda^2x + 2(1-t)\lambda^2 + \frac{2-t}{2}x^2 + x + 1\right) \bar{\Phi}\left(\lambda + \frac{y-x}{2\lambda}\right) e^{-x} \\ &\quad - \left(2(2-t)\lambda^3 - (2-t)\lambda(x+y) - 2\lambda\right) \varphi\left(\lambda + \frac{y-x}{2\lambda}\right) e^{-x} \end{split}$$

and $\tau(\alpha, \lambda, x, y, t)$ is given by Theorem 2.2. The proof is complete. \Box

Lemma 3.4. Let the normalizing constants c_n and d_n be given by (1.7). For $\rho_n \in [-1,1)$,

(i) if $\rho_n \in [-1, 0]$, we have

$$\lim_{n \to \infty} (\log n) \tilde{\Delta}(F_{\rho_n,t}^n, H_\infty; c_n, d_n; x, y) = \frac{1}{2} \Big(\mu(x) + \mu(y) \Big) H_\infty(x, y), \tag{3.21}$$

(ii) if $\rho_n \in (0,1)$ and $\lim_{n \to \infty} \frac{\log b_n}{b_n^2(1-\rho_n)} = 0$, then (3.21) also holds.

Proof. (i). Note that complete independence $(\rho_n \equiv 0)$ and complete negative dependence $(\rho_n \equiv -1)$ imply $\lambda = \infty$. It follows from (3.20) that both

$$b_n^2 \left(-n(1 - F_{-1}(\omega_{n,t}(x), \omega_{n,t}(y))) + e^{-y} + e^{-x} \right)$$

$$= b_n^2 \left(-\bar{\Phi}_{n,t}(x) + e^{-x} \right) + b_n^2 \left(-\bar{\Phi}_{n,t}(y) + e^{-y} \right) + nb_n^2 \mathbb{P}(\omega_{n,t}(x) < X < -\omega_{n,t}(y))$$

$$\to \mu(x) + \mu(y)$$
(3.22)

and

$$b_n^2 \left(-n(1 - F_0(\omega_{n,t}(x), \omega_{n,t}(y))) + e^{-y} + e^{-x} \right)$$

$$= b_n^2 \left(-\bar{\Phi}_{n,t}(x) + e^{-x} \right) + b_n^2 \left(-\bar{\Phi}_{n,t}(y) + e^{-y} \right) + \frac{b_n^2}{n} \bar{\Phi}_{n,t}(x) \bar{\Phi}_{n,t}(y)$$

$$\to \mu(x) + \mu(y)$$
(3.23)

hold as $n \to \infty$, showing that the claimed results (3.21) hold for $\rho_n \equiv -1$ and $\rho_n \equiv 0$ respectively. Thus, it follows from Slepian's Lemma that (3.21) also holds for $\rho_n \in [-1,0]$.

(ii). Obviously, $\lim_{n\to\infty} \frac{\log b_n}{b_n^2(1-\rho_n)} = 0$ implies $\lim_{n\to\infty} \lambda_n = \infty$. Hence, for fixed $x,z\in\mathbb{R}$, one can check that

$$\lim_{n \to \infty} \frac{\omega_{n,t}(x) - \rho_n \omega_{n,t}(z)}{\sqrt{1 - \rho_n^2}} = \infty.$$
(3.24)

By (3.24) and Mills' inequality,

$$b_{n}^{4} \left(1 - \Phi\left(\frac{\omega_{n,t}(x) - \rho_{n}\omega_{n,t}(z)}{\sqrt{1 - \rho_{n}^{2}}}\right)\right)$$

$$< \frac{b_{n}^{4} \exp\left(-\frac{(\omega_{n,t}(x) - \rho_{n}\omega_{n,t}(z))^{2}}{2(1 - \rho_{n}^{2})}\right)}{\frac{\omega_{n,t}(x) - \rho_{n}\omega_{n,t}(z)}{\sqrt{1 - \rho_{n}^{2}}}}$$

$$= \frac{\exp\left(-\frac{((c_{n}x + d_{n})^{1/t} - \rho_{n}(c_{n}z + d_{n})^{1/t})^{2}}{2(1 - \rho_{n}^{2})} + 4\log b_{n}\right)}{\frac{(c_{n}x + d_{n})^{1/t} - \rho_{n}(c_{n}z + d_{n})^{1/t}}{\sqrt{1 - \rho_{n}^{2}}}}$$

$$= \left(b_{n}\sqrt{\frac{1 - \rho_{n}}{1 + \rho_{n}}} + \frac{x - z}{b_{n}\sqrt{1 - \rho_{n}^{2}}} + \frac{z}{b_{n}}\sqrt{\frac{1 - \rho_{n}}{1 + \rho_{n}}} + \frac{(1 - t)(x^{2} - \rho_{n}z^{2})}{2b_{n}^{3}\sqrt{1 - \rho_{n}^{2}}} + \sqrt{\frac{1 - \rho_{n}}{1 + \rho_{n}}}O(b_{n}^{-5})\right)^{-1}$$

$$\times \exp\left(-\frac{b_{n}^{2}(1 - \rho_{n})}{2(1 + \rho_{n})} - \frac{(x - \rho_{n}z)^{2}}{2b_{n}^{2}(1 - \rho_{n}^{2})} - \frac{(1 - t)^{2}(x^{2} - \rho_{n}z^{2})^{2}}{8b_{n}^{6}(1 - \rho_{n}^{2})} - \frac{x - \rho_{n}z}{1 + \rho_{n}} - \frac{(1 - t)(x^{2} - \rho_{n}z^{2})}{2b_{n}^{2}(1 + \rho_{n})} - \frac{(x - \rho_{n}z)^{2}}{2b_{n}^{2}(1 - \rho_{n}^{2})} + \frac{1 - \rho_{n}}{2(1 + \rho_{n})}O(b_{n}^{-5}) + 4\log b_{n}\right)$$

$$< (1 + o(1))e^{-\frac{x - z}{2}} \exp\left\{-\frac{b_{n}^{2}(1 - \rho_{n})}{2(1 + \rho_{n})}\left(1 - \frac{8(1 + \rho_{n})\log b_{n}}{b_{n}^{2}(1 - \rho_{n})} + \frac{(1 + \rho_{n})\log b_{n}^{2}(1 - \rho_{n})}{b_{n}^{2}(1 - \rho_{n})}\right)\right\}$$

$$\rightarrow 0$$

$$(3.25)$$

as $n \to \infty$. Note that

$$n^{-1} = \bar{\Phi}(b_n) = \frac{\varphi(b_n)}{b_n} (1 - b_n^{-2} + O(b_n^{-4})). \tag{3.26}$$

Hence, by (3.10)–(3.12) and (3.26), we have

$$n \mathbb{P}(X > \omega_{n,t}(x), Y > \omega_{n,t}(y))$$

$$= b_n^{-4} (1 - b_n^{-2} + O(b_n^{-4}))^{-1} \int_y^{\infty} b_n^4 \bar{\Phi}(\frac{\omega_{n,t}(x) - \rho_n \omega_{n,t}(z)}{\sqrt{1 - \rho_n^2}}) \exp\left(\frac{b_n^2}{2} \left(1 - (1 + tza_n^2)^{2/t}\right)\right) (1 + tza_n^2)^{1/t - 1} dz$$

$$= O(b_n^{-4}). \tag{3.27}$$

It follows from (3.20) and (3.27) that

$$\begin{split} b_n^2 \Big[F_{\rho_n}^n(\omega_{n,t}(x),\omega_{n,t}(y)) - H_\infty(x,y) \Big] \\ &= b_n^2 H_\infty(x,y) (1+o(1)) \Big[-n(1-F_{\rho_n}(\omega_{n,t}(x),\omega_{n,t}(y))) + e^{-x} + e^{-y} \Big] \\ &= b_n^2 H_\infty(x,y) (1+o(1)) \Big[-(e^{-x} + e^{-y} - b_n^{-2}(\mu(x) + \mu(y) + O(b_n^{-2}))) + e^{-x} + e^{-y} \Big] \\ &\to H_\infty(x,y) \Big[\mu(x) + \mu(y) \Big] \end{split}$$

as $n \to \infty$. The proof is complete. \square

Lemma 3.5. Let the normalizing constants c_n and d_n be given by (1.7). For $\rho_n \in (0,1]$,

(i) if $\rho_n \equiv 1$, we have

$$\lim_{n \to \infty} (\log n) \tilde{\Delta}(F_{\rho_n, t}^n, H_0; c_n, d_n; x, y) = \frac{1}{2} \mu \Big(\min(x, y) \Big) H_0(x, y), \tag{3.28}$$

(ii) if $\rho_n \in (0,1)$ and $\lim_{n\to\infty} b_n^6(1-\rho_n) = c_1 \in [0,\infty)$, then (3.28) also holds.

Proof. (i). Note that the complete positive dependent case $\rho_n \equiv 1$ implies $\lambda = 0$. It follows from (3.20) that

$$b_n^2 \left[-n(1 - F_1(\omega_{n,t}(x), \omega_{n,t}(y))) + e^{-\min(x,y)} \right] = b_n^2 \left[-\bar{\Phi}_{n,t}(\min(x,y)) + e^{-\min(x,y)} \right] \to \mu(\min(x,y))$$
(3.29)

as $n \to \infty$. It follows from (3.29) that (3.28) holds as $\rho_n \equiv 1$.

(ii). Without loss of generality, assume that $y < x \in \mathbb{R}$. For $\max(x, y) = x < z < 4 \log b_n$ we have

$$\Phi\left(\frac{\omega_{n,t}(y) - \rho_{n}\omega_{n,t}(z)}{\sqrt{1 - \rho_{n}^{2}}}\right) \\
< -\frac{\varphi\left(\frac{\omega_{n,t}(y) - \rho_{n}\omega_{n,t}(z)}{\sqrt{1 - \rho_{n}^{2}}}\right)}{\frac{\omega_{n,t}(y) - \rho_{n}\omega_{n,t}(z)}{\sqrt{1 - \rho_{n}^{2}}}} \\
\leq \frac{\exp\left(-\frac{1}{2}\left(\lambda_{n} + \frac{y - z}{2\lambda_{n}}\right)^{2}(1 + o(1))\right)}{\left(-\lambda_{n} + \frac{z - y}{2\lambda_{n}}\left(1 + \frac{(1 - t)(y + z)}{2b_{n}^{2}}\right) - \frac{\lambda_{n}z}{b_{n}^{2}} - \frac{(1 - t)\lambda_{n}z^{2}}{2b_{n}^{4}} + \lambda_{n}O(b_{n}^{-6})\right)(1 - \frac{\lambda_{n}^{2}}{b_{n}^{2}})^{-\frac{1}{2}}} \\
= \frac{\exp\left(-\frac{1}{2}\left(\lambda_{n} + \frac{y - z}{2\lambda_{n}}\right)^{2}(1 + o(1))\right)}{\frac{z - y}{2\lambda_{n}}(1 + o(1))} \tag{3.30}$$

for large n due to $\Phi(-x) = \bar{\Phi}(x)$ and Mills' inequality since $\frac{\omega_{n,t}(y) - \rho_n \omega_{n,t}(z)}{\sqrt{1-\rho_n^2}} < 0$ for large n when $\lim_{n\to\infty} b_n^6 (1-\rho_n) = c_1 \in [0,\infty)$. Therefore,

$$\int_{-\infty}^{4\log b_n} \Phi\left(\frac{\omega_{n,t}(y) - \rho_n \omega_{n,t}(z)}{\sqrt{1 - \rho_n^2}}\right) \exp\left(\frac{b_n^2}{2} \left(1 - (1 + tza_n^2)^{2/t}\right)\right) (1 + tza_n^2)^{1/t - 1} dz$$

$$< \frac{2\lambda_n}{x-y}(1+o(1)) \int_x^{4\log b_n} \exp\left(-\frac{\lambda_n^2}{2} - \frac{y-z}{2} - \frac{(y-z)^2}{8\lambda_n^2} - z + o(b_n^{-1}) + \left(\frac{1}{t} - 1\right) \log(1+tza_n^2)\right) dz$$

$$= 2\lambda_n(1+o(1)) \frac{\exp\left(-\frac{\lambda_n^2}{2} - \frac{y}{2} - \frac{(y-x)^2}{8\lambda_n^2}\right)}{x-y} \int_x^{4\log b_n} \exp\left(-\frac{z}{2}\right) dz$$

$$< 4\lambda_n b_n^{-2}(1+o(1)) \frac{\exp\left(-\frac{\lambda_n^2}{2} - \frac{y}{2} - \frac{(y-x)^2}{8\lambda_n^2}\right)}{y-x}$$

$$= O(b_n^{-4}) \tag{3.31}$$

for large n by $\lim_{n\to\infty} b_n^6(1-\rho_n) = c_1$. It follows from (3.12) that

$$\int_{4 \log b_n}^{\infty} \Phi\left(\frac{(\omega_{n,t}(y) - \rho_n \omega_{n,t}(z))^2}{\sqrt{1 - \rho_n^2}}\right) \exp\left(\frac{b_n^2}{2} \left(1 - (1 + tza_n^2)^{2/t}\right)\right) (1 + tza_n^2)^{1/t - 1} dz$$

$$< \int_{4 \log b_n}^{\infty} \exp\left(\frac{b_n^2}{2} \left(1 - (1 + tza_n^2)^{2/t}\right)\right) (1 + tza_n^2)^{1/t - 1} dz$$

$$= O(b_n^{-4}).$$
(3.32)

Combining (3.20), (3.31) and (3.32), for y < x we have

$$1 - F_{\rho_n} \left(\omega_{n,t}(\min(x,y)), \omega_{n,t}(\max(x,y)) \right)$$

$$= \bar{\Phi}_{n,t}(y) + \bar{\Phi}_{n,t}(x) - \mathbb{P} \left(X > \omega_{n,t}(y), Y > \omega_{n,t}(x) \right)$$

$$= \bar{\Phi}_{n,t}(y) + \bar{\Phi}_{n,t}(x)$$

$$- \int_{x}^{\infty} \bar{\Phi} \left(\frac{\omega_{n,t}(y) - \rho_n \omega_{n,t}(z)}{\sqrt{1 - \rho_n^2}} \right) \exp \left(\frac{b_n^2}{2} \left(1 - (1 + tza_n^2)^{\frac{2}{t}} \right) \right) (1 + tza_n^2)^{\frac{1}{t} - 1} dz$$

$$= \bar{\Phi}_{n,t}(y) + n^{-1} (1 - b_n^{-2} + O(b_n^{-4}))^{-1}$$

$$\times \int_{x}^{\infty} \Phi \left(\frac{\omega_{n,t}(y) - \rho_n \omega_{n,t}(z)}{\sqrt{1 - \rho_n^2}} \right) \exp \left(\frac{b_n^2}{2} \left(1 - (1 + tza_n^2)^{\frac{2}{t}} \right) \right) (1 + tza_n^2)^{\frac{1}{t} - 1} dz$$

$$= n^{-1} (e^{-y} - b_n^{-2} \mu(y) + O(b_n^{-4}))$$

for large n, which implies the desired result. The proof is complete. \Box

Lemma 3.6. With power index t = 2, and the normalizing constants c_n^* and d_n^* given by (1.8). For $\rho_n \in [-1,1)$,

(i) if $\rho_n \in [-1, 0]$, we have

$$\lim_{n \to \infty} (\log n)^2 \tilde{\Delta}(F_{\rho_n,2}^n, H_\infty; c_n^*, d_n^*; x, y) = \frac{1}{4} \Big(\nu(x) + \nu(y) \Big) H_\infty(x, y), \tag{3.33}$$

(ii) if $\rho_n \in (0,1)$ and $\lim_{n\to\infty} \frac{\log b_n}{b_n^2(1-\rho_n)} = 0$, then (3.33) also holds.

Proof. (i). Note that

$$\bar{\Phi}_{n,2}(x) = e^{-x} - b_n^{-4}\nu(x) + O(b_n^{-6})$$
(3.34)

derived by Theorem 1 in [3]. It follows from (3.34) that

$$b_n^4 \left(-n(1 - F_{-1}(\omega_{n,2}^*(x), \omega_{n,2}^*(y))) + e^{-y} + e^{-x} \right) \to \nu(x) + \nu(y)$$

as $n \to \infty$ if $\rho_n \equiv -1$, and

$$b_n^4 \left(-n(1 - F_0(\omega_{n,2}^*(x), \omega_{n,2}^*(y))) + e^{-y} + e^{-x} \right) \to \nu(x) + \nu(y)$$

also holds as $n \to \infty$ if $\rho_n \equiv 0$. Therefore, (3.33) holds for $\rho_n \equiv -1$ and $\rho_n \equiv 0$ respectively. By Slepian's Lemma, (3.33) also holds for $\rho_n \in [-1, 0]$.

Lemma, (3.33) also holds for $\rho_n \in [-1,0]$. (ii). Obviously, $\lim_{n\to\infty} \frac{\log b_n}{b_n^2(1-\rho_n)} = 0$ implies $\lim_{n\to\infty} \lambda_n = \infty$. Hence, for fixed x and z,

$$\frac{\omega_{n,2}^*(x) - \rho_n \omega_{n,2}^*(z)}{\sqrt{1 - \rho_n^2}} \to \infty$$

as $n \to \infty$. By arguments similar to (3.25), we have

$$b_n^6 \left(1 - \Phi\left(\frac{\omega_{n,2}^*(x) - \rho_n \omega_{n,2}^*(z)}{\sqrt{1 - \rho_n^2}} \right) \right) \to 0$$
 (3.35)

as $n \to \infty$. It follows from (3.26) and (3.35) that

$$\begin{split} &\mathbb{P}(X>\omega_{n,2}^*(x),Y>\omega_{n,2}^*(y))\\ &=n^{-1}b_n^{-6}(1+b_n^{-2}+O(b_n^{-4}))\int\limits_y^\infty b_n^6\left(1-\Phi(\frac{\omega_{n,2}(x)-\rho_n\omega_{n,2}(y)}{\sqrt{1-\rho_n^2}})\right)\\ &\times\exp\left(-z+(1+z)a_n^2\right)\left(1-a_n^2\right)\left(1+2\left(z-(1+z)a_n^2\right)a_n^2\right)^{-\frac{1}{2}}dz\\ &=O(n^{-1}b_n^{-6}) \end{split}$$

for large n. Hence,

$$b_{n}^{4} \Big[F_{\rho_{n}}^{n}(\omega_{n,2}^{*}(x), \omega_{n,2}^{*}(y)) - H_{\infty}(x,y) \Big] \to H_{\infty}(x,y) \Big[\nu(x) + \nu(y) \Big]$$

as $n \to \infty$. The proof is complete. \square

Lemma 3.7. With power index t = 2, and the normalizing constants c_n^* and d_n^* given by (1.8). For $\rho_n \in (0, 1]$,

(i) if $\rho_n \equiv 1$, we have

$$\lim_{n \to \infty} (\log n)^2 \tilde{\Delta}(F_{\rho_n,2}^n, H_0; c_n^*, d_n^*; x, y) = \frac{1}{4} \nu \Big(\min(x, y) \Big) H_0(x, y), \tag{3.36}$$

(ii) if $\rho_n \in (0,1)$ and $\lim_{n\to\infty} b_n^{14}(1-\rho_n) = c_2 \in [0,\infty)$, then (3.36) also holds.

Proof. (i). For the complete positive dependent case $\rho_n \equiv 1$, without loss of generality, assume that y < x. It follows from (3.34) that

$$b_n^4 \left[-n(1 - F_1(\omega_{n,2}^*(x), \omega_{n,2}^*(y))) + e^{-y} \right] \to \nu(y)$$

as $n \to \infty$. The desired result (3.36) follows as $\rho_n \equiv 1$.

(ii). By arguments similar to that of (3.31) and (3.32), for fixed $y < x \in \mathbb{R}$ we have

$$\int_{x}^{\infty} \Phi\left(\frac{\omega_{n,2}^{*}(y) - \rho_{n}\omega_{n,2}^{*}(z)}{\sqrt{1 - \rho_{n}^{2}}}\right) \exp(-z + (1+z)a_{n}^{2}) \frac{1 - a_{n}^{2}}{(1 + 2(z - (1+z)a_{n}^{2})a_{n}^{2})^{\frac{1}{2}}} dz = O(b_{n}^{-6})$$
(3.37)

for large n by $\lim_{n\to\infty} b_n^{14}(1-\rho_n)=c_2$. Combining (3.34) with (3.37), we have

$$\begin{split} &1 - F_{\rho_n}(\omega_{n,2}^*(x), \omega_{n,2}^*(y)) \\ &= \bar{\Phi}_{n,2}(y) + n^{-1}(1 - b_n^{-2} + O(b_n^{-4}))^{-1} \\ &\times \int\limits_x^\infty \Phi\left(\frac{\omega_{n,2}^*(y) - \rho_n \omega_{n,2}^*(z)}{\sqrt{1 - \rho_n^2}}\right) \exp(-z + (1+z)a_n^2) \frac{1 - a_n^2}{(1 + 2(z - (1+z)a_n^2)a_n^2)^{\frac{1}{2}}} dz \\ &= n^{-1} \left(e^{-y} - b_n^{-4}\nu(y) + O(b_n^{-6})\right) \end{split}$$

for large n, which implies the desired result. The proof is complete. \Box

4. Proofs

Proof of Theorem 2.1. Obviously,

$$\mathbb{P}\left(\left|M_{n1}\right|^{t} \leq c_{n}x + d_{n}, \left|M_{n2}\right|^{t} \leq c_{n}y + d_{n}\right)$$

$$= F_{\rho_{n},t}^{n}(\omega_{n,t}(x), \omega_{n,t}(y)) - F_{\rho_{n},t}^{n}(\omega_{n,t}(x), -\omega_{n,t}(y)) - F_{\rho_{n},t}^{n}(-\omega_{n,t}(x), \omega_{n,t}(y)) + F_{\rho_{n},t}^{n}(-\omega_{n,t}(x), -\omega_{n,t}(y)).$$

Note that

$$F_{\rho_{n},t}^{n}(\omega_{n,t}(x), -\omega_{n,t}(y)) + F_{\rho_{n},t}^{n}(-\omega_{n,t}(x), \omega_{n,t}(y)) - F_{\rho_{n},t}^{n}(-\omega_{n,t}(x), -\omega_{n,t}(y))$$

$$\leq \mathbb{P}\left(M_{n2} \leq -\omega_{n,t}(y)\right) + \mathbb{P}\left(M_{n1} \leq -\omega_{n,t}(x)\right) - \min\{\Phi^{n}(-\omega_{n,t}(x)), \Phi^{n}(-\omega_{n,t}(y))\}$$

$$= \Phi^{n}(-\omega_{n,t}(x)) + \Phi^{n}(-\omega_{n,t}(y)) - \min\{\Phi^{n}(-\omega_{n,t}(x)), \Phi^{n}(-\omega_{n,t}(y))\}$$

$$= o(b_{n}^{-4})$$
(4.1)

since

$$\bar{\Phi}^{n-1}(-\omega_{n,t}(x)) = \left(n^{-1}e^{-x}(1+O(b_n^{-2}))\right)^{n-1} = o(b_n^{-4}),$$

cf. Lemma 3.1 in [17]. Combining (4.1) with Lemma 3.1, we can get the desired result (2.1). \Box

Proof of Theorem 2.2. It follows from (4.1) and Lemma 3.3 that

$$\Delta(F^n_{\rho_n,t},H_\lambda;c_n,d_n;x,y) = \tilde{\Delta}(F^n_{\rho_n,t},H_\lambda;c_n,d_n;x,y) + o(b_n^{-4}),$$

so the result (2.3) is obtained. \square

Proof of Theorem 2.3 and Theorem 2.4. It follows from (4.1), Lemma 3.4 and Lemma 3.5, respectively.

Proof of Theorem 2.5 and Theorem 2.6. By arguments similar to the proof of Theorem 2.1, we have

$$\Delta(F_{\rho_n,2}^n, H_{\lambda}; c_n^*, d_n^*; x, y) = \tilde{\Delta}(F_{\rho_n,2}^n, H_{\lambda}; c_n^*, d_n^*; x, y) + o(b_n^{-6}),$$

so the desired results follow from Lemma 3.6 and Lemma 3.7, respectively. \Box

Acknowledgments

The first author was supported by the Fundamental Research Funds for the Central Universities Grant no. XDJK2016E117, the CQ Innovation Project for Graduates Grant no. CYS16046.

References

- [1] P. Embrechts, F. Lindskog, A. McNeil, Modelling dependence with copulas and applications to risk management, in: S. Rachev (Ed.), Handbook of Heavy Tailed Distributions in Finance, Elsevier, Amsterdam, 2003, pp. 329–384.
- [2] M. Frick, R.-D. Reiss, Expansions and penultimate distributions of maxima of bivariate Gaussian random vectors, Statist. Probab. Lett. 83 (2013) 2563–2568.
- [3] P. Hall, Estimating probabilities for normal extremes, Adv. in Appl. Probab. 12 (1980) 491–500.
- [4] E. Hashorva, Elliptical triangular arrays in the max-domain of attraction of Hüsler–Reiss distribution, Statist. Probab. Lett. 72 (2005) 125–135.
- [5] E. Hashorva, On the max-domain of attractions of bivariate elliptical arrays, Extremes 8 (2006) 225–233.
- [6] E. Hashorva, A new family of bivariate max-infinitely divisible distributions, Metrika 68 (2008) 289-304.
- [7] E. Hashorya, Minima and maxima of elliptical arrays and spherical processes, Bernoulli 3 (2013) 886–904.
- [8] E. Hashorva, Z. Kabluchko, A. Wübker, Extremes of independent chi-square random vectors, Extremes 15 (2012) 35–42.
- [9] E. Hashorva, C. Ling, Maxima of skew elliptical triangular arrays, Comm. Statist. Theory Methods 12 (2016) 3692–3705.
- [10] E. Hashorva, Z. Peng, Z. Weng, Higher-order expansions of distributions of maxima in a Hüsler-Reiss model, Methodol. Comput. Appl. Probab. 18 (2016) 181–196.
- [11] J. Hüsler, R.-D. Reiss, Maxima of normal random vectors: between independence and complete dependence, Statist. Probab. Lett. 7 (1989) 283–286.
- [12] Z. Kabluchko, L. de Haan, M. Schlatter, Stationary max-stable fields associated to negative definite functions, Ann. Probab. 37 (2009) 2042–2065.
- [13] T. Li, Z. Peng, Moments convergence of powered normal extremes, http://arxiv.org/abs/1607.02245v1, 2016.
- [14] X. Liao, Z. Peng, Convergence rate of maxima of bivariate Gaussian arrays to the Hüsler–Reiss distribution, Stat. Interface 7 (2014) 351–362.
- [15] X. Liao, L. Peng, Z. Peng, Y. Zheng, Dynamic bivariate normal copula, Sci. China Math. 5 (2016) 955–976.
- [16] M. Sibuya, Bivariate extreme statistics, Ann. Inst. Statist. Math. 11 (1960) 195–210.
- [17] W. Zhou, C. Ling, Higher-order expansions of powered extremes of normal samples, Statist. Probab. Lett. 111 (2016) 12–17.