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A B S T R A C T

Gaussian processes (GPs), known for their flexibility as non-parametric models, have been widely used in
practice involving sensitive data (e.g., healthcare, finance) from multiple sources. With the challenge of data
isolation and the need for high-performance models, how to jointly develop privacy-preserving GP for multiple
parties has emerged as a crucial topic. In this paper, we propose a new privacy-preserving GP algorithm, namely
PP-GP, which employs secret sharing (SS) techniques. Specifically, we introduce a new SS-based exponentiation
operation (PP-Exp) through confusion correction and an SS-based matrix inversion operation (PP-MI) based
on Cholesky decomposition. However, the advantages of the GP come with a great computational burden and
space cost. To further enhance the efficiency, we propose an efficient split learning framework for privacy-
preserving GP, named Split-GP, which demonstrably improves performance on large-scale data. We leave the
private data-related and SMPC-hostile computations (i.e., random features) on data holders, and delegate the
rest of SMPC-friendly computations (i.e., low-rank approximation, model construction, and prediction) to semi-
honest servers. The resulting algorithm significantly reduces computational and communication costs compared
to PP-GP, making it well-suited for application to large-scale datasets. We provide a theoretical analysis in
terms of the correctness and security of the proposed SS-based operations. Extensive experiments show that
our methods can achieve competitive performance and efficiency under the premise of preserving privacy.
1. Introduction

Gaussian processes (GPs) [1–4] are widely used non-parametric mod-
els that can provide principled uncertainty representations through pos-
terior variances. These uncertainty representations play a crucial role
in various application domains, including medicine [5–7], robotics [8]
or finance [9], where incorrect predictions could result in catastrophic
consequences. GPs are not only well-suited for problems with limited
observations; they also show considerable potential in leveraging the
available information in large datasets [10].

Despite recent progress, the data used in such applications often
comes from multiple sources but cannot be shared directly due to the
growing privacy concerns in the machine learning (ML) community.
This is also known as the data isolation problem. For instance, different
hospitals with limited patient data aim to collaborate and develop a
high-quality GP model for enhanced disease progression prediction [11,
12]. However, due to legal restrictions, such data often contains sensi-
tive patient information and therefore cannot be shared. Consequently,
a single hospital with limited data may struggle to achieve the high pre-
cision required for effective modeling. Additionally, there are concerns
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regarding potential privacy breaches related to sensitive personal data,
such as personal features (i.e., test input), and diagnostic outcomes
(i.e., model output), particularly when specific hospitals or patients
consider using the developed Gaussian processes model for diagnosis.
Similarly, financial data such as consumption behavior encounters
comparable privacy challenges. This raises a fundamental question:
how can GPs be utilized in a way that aligns with regulatory compliance
requirements?

Several GP approaches specifically catered towards privacy settings
have been proposed to address these issues. These approaches aim to
protect the privacy of both inputs and outputs throughout the process
of model construction and inference. They prevent privacy leakage in
three scenarios: data sharing on horizontally and vertically partitioned
data, as well as privacy-preserving inference (see Fig. 1 for an illustra-
tive example) The most straightforward solution to privacy-preserving
GP is to apply enhancement techniques, including homomorphic en-
cryption (HE) [13], federated learning (FL) [14], and differential privacy
(DP) [15]. Although it is possible to obtain some degree of privacy,
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Fig. 1. Illustration of scenarios of privacy-preserving data sharing on Horizontally partitioned data, Vertically partitioned data, and Privacy-preserving inference. (a) Horizontally
partitioned data (HPD): multiple parties contribute datasets of different entities but with matching features, which are then combined for model construction; (b) Vertically
partitioned data (VPD): parties share distinct features for a common set of entities to collaboratively construct the model; (c) Privacy-preserving inference (PPI): before using the
constructed model, participants must share their data with the model holder.
such approaches are usually ineffective owing to their limitations:
the HE may suffer from high computation and communication costs,
while DP is prone to compromising performance, and the FL typically
provides limited security. Importantly, none of these techniques can
be universally applied to all data-sharing scenarios. Specifically, the
homomorphic encryption GP (HE-GP) [16] methods focus on privacy-
preserving inference, while the federated learning GP (FL-GP) [17–19]
methods are tailored for model construction with horizontally parti-
tioned data; the differential privacy (DP-GP) [20,21] methods, which
operate under the assumption of a single data owner, ensure privacy
preservation for either the input features or the outputs.

This manuscript constitutes a significantly extended version of [22]
that aims to overcome the above-mentioned issues. In this paper, we
propose to study the privacy-preserving GP problem under the secure
multi-party computation (SMPC) [23] perspective. The most prominent
among the various types of SMPC is the secret sharing (SS) [24]
algorithm, which due to its good communication efficiency, has been
widely used in many ML approaches. However, the majority of existing
privacy-preserving ML approaches were not specifically designed for
GPs. Although linear operations (e.g., addition, or multiplication) can
be achieved using existing SS-based toolkits, the non-linear operations
essential for GP tasks, such as exponentiation and matrix inversion,
have not been well integrated into SMPC. To overcome this challenge,
we propose novel SMPC protocols that utilize SS basis operations for
positive definite matrix inversion and exponential operations. Specif-
ically, inspired by the idea of confusion correction, we propose a
privacy-preserving exponentiation operation (PP-Exp) that provides a
more precise approximation than conventional iterative polynomial
methods. Then, we extend the Cholesky decomposition algorithm to en-
able the conversion of all operations into their corresponding SS-based
versions. The resulting algorithm is referred to as privacy-preserving
matrix inversion (PP-MI). Based on these protocols, we propose a novel
privacy-preserving GP framework, named PP-GP, which promises ro-
bust security guarantees and protection against unwanted information
exposure in various data-sharing scenarios.

However, the advantages of the GP come with great computational
and space demands due to its kernel matrix calculations, leading to
(𝑛2) storage complexity and (𝑛3) computational complexity [25].
This often results in communication bottlenecks with SMPC protocols,
particularly for non-linear operations, rendering the privacy-preserving
GP less practical for larger datasets (𝑛 > 104). To further enhance
the efficiency, we introduce Split-GP, a highly efficient split learning
framework tailored for privacy-preserving GP on large-scale data. Split
learning enables us to divide the model into multiple parts, where each
part is computed by a different participant, making it particularly suit-
able for resource-constrained environments. Hence, we split the total
computation process into two parts to address memory and efficiency
concerns: the SMPC-hostile computations related to data are carried
out by data holders, and SMPC-friendly tasks are conducted by semi-
2

honest servers. Specifically, data holders use SS techniques to compute
Fig. 2. Overview of our privacy-preserving GP framework with three-party SMPC
architecture.

the random features [26] expansions mapping based on their private
data, individually. Subsequently, the semi-honest servers combine these
expansions, perform a low-rank factorization for kernel approximation,
and construct the predictive model. The use of random features not
only eliminates the need to share raw data and complex exponential
operations but also enhances communication efficiency. Furthermore,
this allows us to avoid the difficult matrix computations in the size
of the number of data points, which is also the most time-consuming
among the SMPC protocols, and reduce storage space while ensuring
accuracy and efficiency. Consequently, the proposed Split-GP not only
minimizes computation and communication costs but also provides
strong security guarantees (see Fig. 2).

Contributions. In light of the above discussion, the main contributions
of this paper can be summarized as follows:

• We introduce a new perspective on privacy-preserving GP through se-
cret sharing, which broadens the design space for privacy-preserving
ML algorithms. We propose a novel privacy-preserving GP algorithm
named PP-GP (see Algorithm 1), which provably addresses the pri-
vacy exposure concerns in various data-sharing scenarios (Section 4).

• We design privacy-preserving protocols for non-linear operations,
including exponentiation (PP-Exp, see Algorithm 2) and matrix in-
version (PP-MI, see Algorithm 3). Our efficient PP-Exp, inspired by
the idea of confusion correction, is up to 70 times faster than typical
approximation algorithms, offering both correctness and security.
Furthermore, we introduce PP-MI, the first SS-based matrix inver-
sion algorithm using Cholesky decomposition, which matches the
plaintext algorithm’s accuracy with reasonable communication costs
(Section 4).

• To further boost the inference efficiency, we propose Split-GP (see
Algorithm 4), a highly efficient split learning algorithm tailored for
privacy-preserving GP on large-scale data (𝑛 > 104). The Split-GP can
have significantly lower communication and computation complexity
(Section 5).
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• Our theoretical analysis demonstrates the correctness and security
of PP-MI and PP-Exp, which thereby provide strong security guar-
antees for our approaches (Section 6). We evaluate the empirical
performance of PP-GP and Split-GP on several datasets from the UCI
repository. The results demonstrate that although Split-GP exhibits
a slight decrease in performance, it is particularly effective when
applied to large datasets. It achieves up to 30× faster computation
and reduces communication by 50 ∼ 3000×(Section 7).

Organization. The rest of this paper is organized as follows: We first
review and discuss the related work in Section 2 and then briefly intro-
duce the preliminaries relevant to our discussion in Section 3. Section 4
outlines our proposed framework as well as its associated operations. In
addition, we extend the proposed method to split learning in Section 5.
In Section 6, we state our theoretical results for the proposed protocols.
We provide the empirical performance evaluation of our methods in
Section 7. All proofs are deferred to Appendix.

2. Related work

In recent times, several approaches have appeared to tackle the
challenges of privacy-preserving ML and GP models. In this section, we
review the relevant literature and its connections to our work.

Gaussian processes. Gaussian Processes (GPs) have demonstrated sig-
ificant success across various ML applications, including Bayesian
ptimization [27–29], deep neural networks [30–32], reinforcement
earning [8,33,34], and time-series analysis [35,36]. Their strengths lie
n providing reliable uncertainty quantification, priors that require little
xpert intervention, and a flexible adaptability to datasets of varying
izes [1,37]. While GPs are effective for tasks with limited data, they
lso hold the potential to exploit the available information from expan-
ive datasets, especially when paired with expressive kernels [38,39] or
ierarchical structures [40–45].

Several follow-up works have focused on enhancing GPs in various
ays for application to large-scale data (e.g.,). However, a drawback
f GPs is their poor scalability with the dataset size 𝑛; training and

prediction scale with complexities of (𝑛3) and (𝑛2), respectively. This
constraint practically limits GPs to datasets of size around (104) [46].
or large datasets (e.g., 𝑛 > 104), sparse approximations have been
uccessfully applied in a broad range of practical applications [47–50].
hese methods typically reduce the computational burden by implicitly
r explicitly using a subset of the data. A recent line of work has
tudied the distributed GPs [25,46,51], allowing independent updates
f variational parameters across different computing nodes. To the best
f our knowledge, applying GPs to training set sizes of 𝑛 ≥ (107)

remains impractical [52].

Privacy-preserving machine learning. Recent concerns about data pri-
vacy, coupled with the need for enhanced ML performance, have
accelerated interest in privacy-preserving ML (PPML) [23,53]. PPML
allows multiple entities to collaboratively develop ML models without
compromising data privacy. However, the majority of existing PPML
studies predominantly concentrate on linear regression [54,55], logistic
regression [23,56,57], decision trees [58], and neural networks [23,59–
61]. These models can be broadly categorized based on data partition-
ing: horizontally partitioned PPML, where each party possesses a subset
of samples with identical features, and vertically partitioned PPML,
where parties share the same samples but different features [53,62].

Privacy-preserving Gaussian processes. To construct privacy-preserving
GPs, various enhancement techniques can be employed, including Ho-
momorphic Encryption (HE) [16,63], Differential Privacy (DP) [15,64],
and Federated Learning (FL) [65]. While they provide a certain de-
gree of privacy guarantees, they come with limitations: HE suffers
high computation and communication costs, DP often compromises
performance, and FL provides limited security. Moreover, none of them
are practical enough to protect the privacy of both the inputs and
3

outputs, across all three data-sharing situations. Specifically, Fenner
and Pyzer-Knapp [16] employ the HE algorithm to secure test data
input features but consider only the PDS scenario. Due to the high
computational demands of working on homomorphically encrypted
data, the prediction in PP-GP involves interactive calculations between
the user and the model constructor. However, this interactive approach
cannot be directly extended to the HE-based PP-GP construction, as it
omits the covariance matrix inversion operation.

DP is another technique widely used to achieve PP-ML models.
Smith et al. [20] leveraged DP in the construction of GP and introduced
the first DP-GP learning algorithm. However, this algorithm comes with
certain limitations. Specifically, it can only guarantee the privacy of
the model outputs, but does not extend the same privacy guarantee to
intermediate values and parameters. [21] protected the input features
with random projection, but required that all the observations used
belong to a single party, which restricts its applicability in both HPD
and VPD scenarios. In addition, when the privacy budget 𝜖 is limited,
the DP-based method can introduce substantial noise to the original
model, potentially compromising its performance [66].

Other works [17,19,67] utilize FL to protect GP observation pri-
vacy or combine FL with DP to enhance the privacy protection of
the model parameters during the model construction process [18]. To
adapt GP model construction for distributed or federated framework,
these methods often rely on sparse approximations of the standard GP,
which could compromise model performance. Furthermore, FL-based
GP methods are limited to the HPD scenario. On the other hand, The
privacy-preserving capabilities of FL-based GP [17,19,67] lack com-
prehensive theoretical analysis. This happens because the algorithm
requires the server and clients to exchange intermediate results like
local model parameters or gradients. Numerous research [68,69] have
shown that such exchanges can inadvertently expose sensitive data.
Moreover, the privacy of HE-based GP methods [16] may be at risk,
particularly due to decryption steps taken to mitigate the computational
burden of exponential operations, especially in PPI scenarios.

Relation to [22]. This paper is a substantially extended version of our
previous conference paper [22], with the new contributions summa-
rized as follows:

• We have developed an efficient framework for privacy-preserving
Gaussian Processes (GPs) using split learning, which shows significant
capability in processing large-scale data. Inspired by split learning, we
have divided the entire computational process and approximated the
kernel using random features. This approach reduces the dimension
of matrix operations, thereby ensuring communication efficiency and
enhancing the efficiency of subsequent computations (Section 5).

• We have conducted more experiments, incorporating additional large-
scale datasets, and provided comprehensive comparisons of running
time and communication within the empirical benchmark study
(Section 7).

• In addition, we have presented more in-depth theoretical analy-
ses, including more rigorous and formal proofs for PP-Exp, and de-
tailed proofs of security and correctness for PP-MI (Section 6 and
Appendix A).

• Finally, we have provided a more comprehensive review of re-
lated work about Gaussian processes and privacy-preserving ma-
chine learning. This will help us to better understand the relevant
background, and make it easier to follow our research (Section 2).

This work presents a solution that effectively tackles the challenges
posed by the SS-based non-linear operation, thereby ensuring compre-
hensive privacy protection throughout the entire inference process of
privacy-preserving GPs. To the best of our knowledge, there is limited
research in the field of privacy-preserving GPs that are specifically
designed with SMPC techniques to fully satisfy privacy requirements
in various data-sharing contexts. Our proposed approaches not only
fill this gap but also have the potential to significantly enhance real-
world applications of privacy-preserving GPs, especially in large-scale

contexts.
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3. Preliminaries

In this section, we provide an overview of the relevant background.
First, we define basic notation and recall elementary concepts of the
Gaussian process. Then, we briefly introduce secure multi-party compu-
tation, including secret sharing and fixed-point representation. Finally,
we introduce the random features, which provide a way to tackle
large-scale machine learning problems with kernel methods.

3.1. Gaussian process

Considered the observed data  =
{

(𝐱𝑖, 𝑦𝑖)
}𝑛
𝑖=1 for 𝐱𝑖 ∈ R𝑑 and

𝑦𝑖 ∈ R. Gaussian processes (GPs) are non-parametric machine learning
models that define a distribution over functions 𝑦 = 𝑓 (𝐱) + 𝜀, where

𝑓 (𝐱) ∼ 
(

𝜇(𝐱), 𝑘(𝐱, 𝐱′)
)

, 𝜀 ∼  (0, 𝜎2), (3.1)

and 𝜇(𝐱) = E[𝑓 (𝐱)] is prior mean function R𝑑 → R. Typically, it is set
to zero without loss of generality. The function 𝑘(𝐱, 𝐱′) represents the
covariance kernel R𝑑 ×R𝑑 → R, defined as the covariance between 𝑓 (𝐱)
and 𝑓 (𝐱′). Common kernels include the Radial Basis Function (RBF)
kernel, 𝑘(𝐱, 𝐱′) ∶= 𝜎2𝑠 exp

(

−‖𝐱 − 𝐱′‖22∕2𝓁
2), incorporate the length-scale

𝓁 and the signal variance 𝜎2𝑠 .
Let 𝑋 = (𝐱1,… , 𝐱𝑛)⊤ be an 𝑛 × 𝑑 input matrix and 𝐲 = (𝑦1,… , 𝑦𝑛)⊤

represent column vector of the 𝑛 noisy outputs. For a test point 𝐱∗, the
GP predictive posterior distribution 𝑝

(

𝑓 (𝐱∗)|
)

, assuming a Gaussian
likelihood, is Gaussian and characterized by the following moments:

𝜇𝑓 ∣(𝐱∗) = 𝐤⊤∗ (𝐾𝑋𝑋 + 𝜎2𝑛𝐼)
−1𝐲, (3.2a)

𝜎2𝑓 ∣(𝐱
∗) = 𝑘(𝐱∗, 𝐱∗) − 𝐤⊤∗ (𝐾𝑋𝑋 + 𝜎2𝑛𝐼)

−1𝐤∗, (3.2b)

where 𝐤∗ = 𝑘(𝐱∗, 𝑋) =
(

𝑘(𝐱∗, 𝐱𝑖)
)𝑛
𝑖=1 consists of kernel values between

training examples and a test point 𝐱∗. The matrix 𝐾𝑋𝑋 , with dimensions
𝑛 × 𝑛, represents all pairs of kernel entries, where

[

𝐾𝐗𝐗
]

𝑖𝑗 = 𝑘(𝐱𝑖, 𝐱𝑗 ).
To simplify notation, a hat symbol denotes a kernel matrix with added
Gaussian observational noise �̂�𝐗𝐗 = 𝐾𝐗𝐗 + 𝜎2𝑛𝐼 , and 𝐼 represents the
identity matrix of size 𝑛 × 𝑛.

3.2. Secure multi-party computation

Secure multi-party computation (SMPC) [70] allows multiple par-
ties to collaboratively compute an operation 𝑓 , while preserving any
privacy of their individual data throughout the computation process.
In this paper, we employ the semi-honest security model, sometimes
referred to as the honest-but-curious model, which has been the back-
bone of numerous privacy-preserving ML algorithms [60,71–75]. Under
the semi-honest setting, involved parties are expected to adhere to the
SMPC protocol but might attempt to infer unexposed information using
acquired data-sharing and intermediate computations. Now, we discuss
the secret sharing technique and introduce the algebraic structure that
forms the foundation of our SMPC protocol.

3.2.1. Secret sharing
Secret sharing (SS) [76,77] is a crucial component of SMPC. It

allows a secret to be divided among multiple parties in such a way that
the secret can only be reconstructed when a sufficient number of them
collaborate. Specifically, we focus on the (2, 2)-additive secret sharing
scheme in this work. This scheme is defined by two algorithms: 𝑆ℎ𝑟(⋅)
for sharing and 𝑅𝑒𝑐(⋅, ⋅) for reconstruction. We represent the additive
share of an integer 𝑢 in the ring of integers modulo 𝐿, denoted as 𝐿,
as [[𝑢]] = ([𝑢]0, [𝑢]1). The sharing algorithm 𝑆ℎ𝑟(𝑢) → ([𝑢]0, [𝑢]1) works by
randomly selecting a number 𝑟 from 𝐿. It sets [𝑢]0 = 𝑟 and computes
[𝑢]1 = (𝑢 − 𝑟) mod 𝐿. Due to the random choice of 𝑟, neither [𝑢]0 nor
[𝑢]1 individually provides any information about the original value 𝑢.
Reconstruction is straightforward with the 𝑅𝑒𝑐([𝑢]0, [𝑢]1) → 𝑢 algorithm,
4

which computes ([𝑢]0 + [𝑢]1) mod 𝐿 to obtain the original value 𝑢. e
Additive secret sharing is a foundational technique in the design
of SMPC protocols, particularly for machine learning operations such
as addition and multiplication. In this approach, both the inputs and
the outputs of the SMPC protocol are represented as additive shares.
Specifically, for an operation 𝑓 , denoted by the SMPC protocol 𝜋𝑓 ,
the protocol transforms the additive shares of the inputs, [𝑖𝑛𝑝𝑢𝑡𝑠]0 and
[𝑖𝑛𝑝𝑢𝑡𝑠]1, into the corresponding additive shares of the output, [𝑓 ]0 and
[𝑓 ]1.

SS-based multiplication 𝑢 × 𝑣. To understand the secret sharing-based
multiplication protocol, let us consider its execution by two parties: 𝑃0
and 𝑃1. Each party receives one additive share, denoted as ([𝑢]𝑖, [𝑣]𝑖), of
the operation’s inputs. Here, 𝑖 ∈ {0, 1} is associated with the respective
party. To compute the additive shares of 𝑢 × 𝑣, Beaver triples (𝑎, 𝑏, 𝑐)
re used. Within these triples, 𝑎 and 𝑏 are random values in 𝐿, and 𝑐

is derived as 𝑎 × 𝑏 mod 𝐿. Each party, 𝑃𝑖, starts by determining [𝑑]𝑖 =
[𝑢]𝑖 − [𝑎]𝑖 and [𝑒]𝑖 = [𝑣]𝑖 − [𝑏]𝑖. Subsequently, the parties exchange their
alculated values [𝑑]𝑖 and [𝑒]𝑖. Using these shared values, they then
ointly reconstruct 𝑑 through Rec([𝑑]0, [𝑑]1) and 𝑒 via Rec([𝑒]0, [𝑒]1).
he final computation for the additive share of 𝑢 × 𝑣 is derived as
𝑢 × 𝑣]𝑖 = −𝑗 × 𝑑 × 𝑒 + [𝑢]𝑖 × 𝑒 + 𝑑 × [𝑣]𝑖 + [𝑐]𝑖. It is worth noting that for
he multiplication SMPC protocol to be completed, both parties must
artake in one communication round, involving a two-way exchange
f two ring elements.

S-based matrix multiplication 𝐔𝐕. The SS-based multiplication proto-
ol can be straightforwardly extended to SS-based matrix multiplica-
ion [23]. Let MatMul(𝐔,𝐕) denotes the SS-based matrix multiplication
peration, where 𝐔 is a 𝑚×𝑛 matrix and 𝐕 is a 𝑛×𝑘 matrix. During this
rocess, one round of bidirectional communication (between parties 𝑃0
nd 𝑃1) is required, during which a total of (𝑚 + 𝑘) × 𝑛 ring elements
re transmitted.

While SS-based protocols offer efficiency for various operations,
hey are not universal. Purely additive secret sharing on 𝐿 encoun-
ers limitations, especially when dealing with specific operations like
xponentiation and matrix inversion. To address these challenges, ap-
roximation techniques are often introduced. For instance, methods
uch as the Newton–Raphson iteration and Taylor expansion provide
orkarounds for these operations, as discussed in [78].

.2.2. Fixed-point representation
SS-based SMPC protocols typically use a ring of integers for security.

hile many machine learning algorithms, like GP, favor floating-point
umbers, they prove inefficient in SMPC [79]. Thus, fixed-point rep-
esentation, offering better performance, is the common choice in this
ontext.

In fixed-point encoding, all data is represented using a fixed number
f bits, typically denoted as 𝑙. We can define a set of fixed-point
umbers, denoted as <𝐿 ,𝑙𝑓>, where 𝑙𝑓 represents the number of
ractional bits (precision). The set is mapped from the ring of integers
𝐿, where 𝐿 = 2𝑙. For floating-point numbers within a specific range,

uch as [−2𝑙−𝑙𝑓−1, 2𝑙−𝑙𝑓−1), this work adopts a rounding procedure to
onvert them to the nearest fixed-point numbers in <𝐿 ,𝑙𝑓>. Then,
hese fixed-point numbers are further mapped to integers in 𝐿 by
ultiplying them with 2𝑙𝑓 .

Consider the example where 𝑙 = 7 and 𝑙𝑓 = 4. Given a floating-
oint number 1.937532 within the range [−4, 4], the first step involves
ounding it to a fixed-point number, resulting in 1.9375. This number
elongs to <27 ,4>

. Subsequently, it is transformed into an element of
27 using the formula (1.9375 × 24) mod 27, which equals 31. On the
ther hand, to convert an integer from 27 to a fixed-point number in
<27 ,4>

, you’d proceed as follows: take the integer 29 from 27 , and
he conversion yields 29∕24 = 1.8125.

In this paper, all algorithms operate on 𝐿 and <𝐿 ,𝑙𝑓>. By se-
ecting suitable 𝑙 and 𝑙𝑓 , fixed-point-based SMPC protocols can balance

fficiency and accuracy. For simplicity, lowercase letters denote either
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loating-point or integer numbers, while �̌� indicates a fixed-point num-
er in <𝐿 ,𝑙𝑓> derived from 𝑥. For simplicity, we use lowercase letters
or both floating-point or integer numbers, and �̌� denotes the fixed-
oint representation of 𝑥 in <𝐿 ,𝑙𝑓>. Moreover, the algorithm 𝑆ℎ𝑟(𝑥)
ill convert the input 𝑥 to its corresponding representation in 𝐿, when
is a floating-point number.

.3. Random feature

Random features (RF) [26] is a technique that is widely used to scale
p kernel methods. It offers a simple and effective way to approximate
he kernel function using explicit feature mapping. RF specifically
pplies to shift-invariant (stationary) kernels [80,81]:

(𝐱, 𝐱′) = 𝑘(𝐱 − 𝐱′) = ∫ 𝜑(𝐱,𝐰)𝜑(𝐱′,𝐰)𝑝(𝐰)d𝐰 (3.3)

here 𝜑 ∶∈ R𝑑 × 𝛺 → R is a continuous and bounded function with
espect to 𝐰 and 𝐱. 𝑝(⋅) is the density function if the spectral measure.
he core idea underlying RF is to approximate the kernel function
(𝐱, 𝐱′), via Monte-Carlo estimation. Instead of directly computing the
ernel function, we calculate its approximation using a set of random
eatures:

(𝐱 − 𝐱′) ≈ 1
𝑀

∑𝑀
𝑗=1

𝜑(𝐱,𝐰𝑗 )𝜑(𝐱′,𝐰𝑗 )

=
⟨

𝜙𝑀 (𝐱), 𝜙𝑀 (𝐱)
⟩

.
(3.4)

where 𝜙𝑀 (𝐱) = 1
√

𝑀

(

𝜑(𝐱,𝐰1),… , 𝜑(𝐱,𝐰𝑀 )
)⊤ is a vector of random

features for a given input, and the number of random features 𝑀 ≪ 𝑛.
The vectors 𝐰1,… ,𝐰𝑀 are drawn independently in accordance with
the density function 𝑝(𝐰). For many commonly used kernels, it is
feasible to compute 𝑝(𝐰) in closed form, such as in the case of RBF
kernel, which possesses zero-mean Gaussian spectral densities. The
selection of the number of random features is at the user’s discretion,
with typical values ranging between 100–1000; more features in more
precise approximations of the kernel function.

The Eq. (3.4) enables us to approximate the shift-invariant kernels
with explicit feature maps through the Monte Carlo approximation
of the Fourier representation. Therefore, RFs provide us with a com-
putationally efficient approach to approximating kernel machines in
machine learning tasks, which makes them one of the most popu-
lar techniques for accelerating kernel methods in large-scale prob-
lems [81].

4. Practical privacy-preserving Gaussian process

In this section, we present our privacy-preserving GP framework
(PP-GP), which safeguards individual data privacy using SMPC tech-
niques. First, we derive the architecture of PP-GP model. Then, we
5

detail the essential SS-based non-linear operations in our approach:
the exponentiation (PP-Exp) and matrix inversion (PP-MI). Finally,
we analyze the communication complexity of these operations. The
overview of our proposed framework is illustrated in Fig. 3.

4.1. Proposed method

Our privacy-preserving GP follows the framework of the standard
GP algorithm. It aims to achieve comparable performance with the
plaintext GP while ensuring data privacy. In practice, PP-GP adopts a
three-party SMPC architecture: two computing servers, 0 and 1, and
an assistant server, 𝑇 . In this setting, 0 and 1 receive an additive
share of the data and process PP-GP algorithm, resulting in an additive
share of the GP predictive outcomes. The assistant server, 𝑇 , primarily
generates the random numbers essential for the SS-based protocols
within PP-GP. The specific steps of PP-GP are detailed in Algorithm
1.

Initialization. For successful execution and to ensure coherence, all
involved parties, including servers (0, 1, and 𝑇 ), data owners, and
users, must establish a consensus on the algebraic structure. This con-
sensus entails selecting suitable values for 𝑙 and 𝑙𝑓 that will define

2𝑙 and <2𝑙 ,𝑙𝑓>
, respectively. After this step, data owners and users

onvert their private observations, denoted as  = (𝑋, 𝐲), and test
nputs, represented by 𝐱∗, into shared representations using the 𝑆ℎ𝑟(⋅)
unction. These shared representations

(

[[𝐱∗]], [[𝑋]], [[𝐲]]
)

, are then trans-
formed into individual shares

(

[𝐱∗]𝑖, [𝑋]𝑖, [𝐲]𝑖
)

, which are subsequently
dispatched to the appropriate computing server 𝑖 (𝑖 = 0, 1).

Since each variable in 𝑋, 𝐲, and 𝐱∗ undergoes independent appli-
ation of 𝑆ℎ𝑟(⋅), data shares can be easily computed, regardless of
ariable partitioning among data owners. This adaptability enables
he SS-based GP algorithm to handle various data scenarios, suitable
or diverse real-world applicability. GP hyperparameters (𝓁, 𝜎2𝑠 , 𝜎

2
𝑛 ) are

ublicly shared between the computing servers. Once servers have data
nd hyperparameter shares, they initiate the SS-based protocols for PP-
P, producing shares of predictive results. With the shared data in
lace, the servers proceed with the construction and inference of the
rivacy-preserving GP model.

odel construction. During the model construction phase, the servers
irst calculate secret shares of the distance matrix 𝑑(𝑋,𝑋′) ∶=
[

𝑑(𝐱𝑖, 𝐱′𝑗 )
]

𝑖,𝑗=1,…,𝑛. To achieve this, we employ the SS-based protocol,
enoted as dist(𝑋,𝑋′). This protocol relies on standard SS-based addi-
ion and (matrix) multiplication operations. Once the distance matrix
hares are computed, the servers proceed to calculate the shares [[𝐾]].
hey utilize the privacy-preserving exponentiation operation, PP-Exp.

Following this, the servers compute the shares [[Λ]] with the aid of
the privacy-preserving matrix-inverse operation, PP-MI, with the inputs
[[𝐾]] + 𝜎2𝐼 .
𝑛
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Algorithm 1: Privacy-Preserving Gaussian Process (PP-GP)
Setup: The servers (0,1, 𝑇 ) choose appropriate 𝑙 and 𝑙𝑓 .

shares
(

[[𝑋]], [[𝐲]], [[𝐱∗]]
)

.
Input: 𝑖 has shares

(

[𝐱∗]𝑖, [𝑋]𝑖, [𝐲]𝑖
)

and (𝓁, 𝜎2𝑠 , 𝜎
2
𝑛 ), 𝑖 ∈ {0, 1}.

Output: 𝑖 gets
[

𝜇𝐱∗|
]

𝑖 ,
[

𝜎2𝐱∗|
]

𝑖.

/* Construction stage */
1 [[𝑑(𝑋,𝑋)]] ← dist([[𝑋]], [[𝑋]])
2 [[𝐾]] ← 𝜎2𝑠 ⋅ PP-Exp([[−𝑑(𝑋,𝑋)∕2𝓁2]])
3 [[𝚲]] ← PP-MI([[(𝐾 + 𝜎2𝑛𝐼)]])
/* Prediction stage */

4 [[𝑑(𝐱∗, 𝐱∗)]] ← dist([[𝐱∗]], [[𝐱∗]]), [[𝑑(𝐱∗, 𝑋)]] ← dist([[𝐱∗]], [[𝑋]])
// Compute the kernel matrix

5 [[𝑘(𝐱∗, 𝐱∗)]] ← 𝜎2𝑠 ⋅ PP-Exp([[−𝑑(𝐱
∗ ,𝐱∗)∕2𝓁2]])

6 [[𝐤∗]] ← 𝜎2𝑠 ⋅ PP-Exp([[−𝑑(𝐱
∗ ,𝑋)∕2𝓁2]])

7 [[𝐤⊤∗𝚲]] ← MatMul([[𝐤⊤∗ ]], [[𝚲]])
// Compute the predictive moments

8 [[𝜇2
𝐱∗|]] ← MatMul

(

[[𝐤⊤∗𝚲]], [[𝐲]]
)

9 [[𝜎2𝐱∗|]] ← [[𝑘(𝐱∗, 𝐱∗)]] − MatMul
(

[[𝐤⊤∗𝚲]], [[𝐤∗]]
)

Prediction. At the prediction stage, the model user invokes 𝑆ℎ𝑟(⋅) to
enerate [𝐱∗]0 and [𝐱∗]1 for each test input and sends each share to
he corresponding computing server. Then, the servers calculate [[𝐤∗]]
nd [[𝑘(𝐱∗, 𝐱∗)]] using dist and PP-Exp. They then obtain the shares of
he predictive mean [[𝜇𝐱∗|]] = [[𝐤⊤∗ ]][[Λ]][[𝐲]] and variance [[𝜎2𝐱∗|]] =
[[𝑘(𝐱∗, 𝐱∗)]] − [[𝐤⊤∗ ]][[Λ]][[𝐤∗]] using the matrix multiplication operation
MatMul. Finally, the computing servers send the shares of the prediction
results to the model user. This allows the user to obtain the prediction
results locally through 𝑅𝑒𝑐(⋅).
Algorithm 2: Privacy-preserving exponentiation (PP-Exp)
Setup: The servers (0,1, 𝑇 ) choose appropriate 𝑙, 𝑙𝑓 , 𝑢𝑚𝑖𝑛 and

�̌�𝑚𝑎𝑥.
Input: 𝑖 has share [𝑢]𝑖, 𝑖 ∈ {0, 1}.
Output: 𝑖 gets share [exp(𝑢)]𝑖 .
/* Offline phase executed on assistant server 𝑇

*/
1 𝑇 draws �̌� in the range [−�̌�𝑚𝑎𝑥, �̌�𝑚𝑎𝑥) randomly, computes

𝑟 ← �̌� ⋅ 2𝑙𝑓 , and generates
(

[𝑟]0, [𝑟]1
)

∈ 𝐿
2 𝑇 computes exp(−�̌�) in <𝐿 ,𝑙𝑓> and generates

(

[exp(−�̌�)]0,
[exp(−�̌�)]1

)

∈ 𝐿
3 𝑇 sends [𝑟]𝑖 and [exp(−�̌�)]𝑖 to 𝑖(𝑖 = 0, 1)
/* Online phase */

4 for 𝑖 = 0, 1 in parallel do
5 𝑖 computes [𝑑]𝑖 ← [𝑢]𝑖 + [𝑟]𝑖 and sends [𝑑]𝑖 to each other
6 𝑖 computes 𝑑 ← 𝑅𝑒𝑐

(

[𝑑]0 + [𝑑]1
)

and 𝑑 ← 𝑑∕2𝑙𝑓
7 𝑖 computes exp(𝑑) in <𝐿 ,𝑙𝑓> and

[exp(𝑢)]𝑖 ← exp(𝑑) ⋅ 2𝑙𝑓 ⋅ [exp(−�̌�)]𝑖
8 end

4.2. Privacy-preserving operation construction

To facilitate secure interactions between servers 0 and 1, we
design efficient sub-protocols based on the additive SS techniques. We
focus on the essential privacy-preserving operations, the exponentiation
PP-Exp and matrix inversion PP-MI, for PP-GP algorithm.

4.2.1. Privacy-preserving exponentiation
While additive SS can handle operations like addition and multipli-
6

cation directly, it struggles with exponentiation. A commonly employed
solution is to approximate the exponentiation using its Taylor ex-
pansion: exp(𝑢) =

∑∞
𝑘=0

𝑢𝑘∕𝑘!. This transforms the exponentiation into
a series of additions and multiplications. However, the exponential
function grows much faster than any polynomial, which means that this
Taylor series approximation can introduce substantial errors. Increasing
the degree of the polynomial can enhance accuracy, but this comes
at the cost of greater communication, especially given the need for
information exchange in SS-based multiplication. To tackle this, Knott
et al. [78] proposed a new method. They utilized the limit approxima-
tion: exp(𝑢) = lim𝑘→∞(1 + 𝑢∕2𝑘)2𝑘 . This approach employs the repeated
squaring algorithm, efficiently generating higher-order polynomials
iteratively. However, even with this refined technique, obtaining pre-
cise approximation results demands significant communication and
computational overhead.

We introduce a novel approach for constructing a privacy-preserving
exponentiation operation, termed PP-Exp. This approach draws on
the concept of confusion-correction. In the PP-Exp operation, each
computing server, 0 and 1, receives an additive share [𝑢]𝑗 of a private
number 𝑢 within the range [𝑢𝑚𝑖𝑛, 0]. The objective is to enable these
servers to deduce the additive shares of exp(𝑢) in a confidential manner,
aided by random numbers supplied by a trusted entity 𝑇 . The PP-Exp
algorithm unfolds in several steps:

1. The servers apply a masking operation on the share of 𝑢, adding a
random value 𝑟 which results in the share 𝑢 − 𝑟.

2. They then collaboratively reveal this obfuscated value 𝑢 − 𝑟.
3. With the obfuscated value in hand, each server computes the obfus-

cated outcome exp(𝑢 − 𝑟).
4. Finally, each server corrects its share of exp(𝑢 − 𝑟) by stripping away

the mask, ultimately obtaining the share of exp(𝑢).

The pseudo-code for the PP-Exp operation is provided in Algorithm
2. It is important to note that PP-Exp is specifically designed to handle
negative input values 𝑢. This choice aligns with the fact that commonly
used kernel functions in GP, such as RBF kernel, involve the exponen-
tiation of negative values. The correctness and security of the proposed
PP-Exp operation can be achieved by carefully selecting appropriate
values for [−�̌�𝑚𝑎𝑥, �̌�𝑚𝑎𝑥), which will be discussed in detail later.

4.2.2. Privacy-preserving matrix inversion
Previous research [78] attempted to approximate matrix inversion

using the Newton–Raphson iteration, a local optimization technique.
However, this approach heavily depends on the initial value of the
algorithm. This becomes challenging in secure computation, where no
information about the original input matrix is accessible to determine
an initial inverted matrix that satisfies the convergence condition.

PP-MI converts the matrix inversion process into SMPC-suited op-
erations, primarily multiplication and division, using the Cholesky
decomposition. Specifically, with 𝐊 + 𝜎2𝑛𝐈 as a positive definite matrix,
its inversion is computed as 𝐊 + 𝜎2𝑛𝐈 = 𝐋𝐃𝐋⊤, where 𝐋 and 𝐃 are a
lower triangular and diagonal matrix, respectively. This method, which
only requires addition, multiplication, and division between matrix
elements, is then securely adapted to the SS-based version. In PP-MI,
each server 𝑖 (𝑖 = 0, 1) processes an additive share [𝐔]𝑖 of matrix
𝐔 ∈ 𝑍𝑛×𝑛

𝐿 as input to privately compute a share of 𝐔−1.
Let 𝐔 denote an 𝑛×𝑛 positive definite matrix, with its entries defined

as 𝑢ℎ,𝑘, for ℎ, 𝑘 = 1, 2,… , 𝑛. It can be factorized into the form 𝐔 = 𝐋𝐃𝐋⊤,
where 𝐋 represents a unit lower triangular matrix, and 𝐃 is a diagonal
matrix. Consider 𝑑𝑘 to represent the 𝑘 the diagonal element of 𝐃. The
matrices 𝐋 and 𝐃 can be computed as follows:

⎧

⎪

⎨

⎪

⎩

𝑑𝑘 = 𝑢𝑘,𝑘 −
∑𝑘−1

𝑚=1
𝑙2𝑘,𝑚 × 𝑑𝑚 ,

𝑙ℎ,𝑘 =
(

𝑢ℎ,𝑘 −
∑𝑘−1

𝑚=1
𝑙ℎ,𝑚 × 𝑙𝑘,𝑚 × 𝑑𝑚

)

∕𝑑𝑘 .
(4.1)

Assuming that 𝐔Λ = 𝐈, where 𝐈 is an 𝑛 × 𝑛 identity matrix, we
now outline the procedure for computing Λ based on 𝐈, 𝐋, and 𝐃.
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Consequently, we can obtain 𝐔−1 = Λ. Define 𝐕 ∶= 𝐃𝐋⊤Λ. Then, we
have 𝐔Λ = (𝐋𝐃𝐋⊤)Λ = 𝐋𝐕 = 𝐈, where 𝐕 is a unit lower triangular

atrix. Moreover, for 𝑘 = 1,… , 𝑛 and ℎ = 𝑘 + 1,… , 𝑛, we have each
lements of 𝐕,

ℎ,𝑘 = −
∑ℎ−1

𝑚=1
𝑣𝑚,𝑘 × 𝑙ℎ,𝑚. (4.2)

Finally, we compute the matrix Λ,

=
(

𝐋𝐃𝐋⊤)−1 = (𝐋−1)⊤𝐃−1𝐋−1 = 𝐕⊤𝐃−1𝐕. (4.3)

Combining Eqs. (4.1)–(4.3), we can achieve matrix inversion us-
ng privacy-preserving multiplication (MatMul) and privacy-preserving
ivision (Div) appropriately [78]. Building upon this intuition, we
ropose a novel privacy-preserving matrix multiplication algorithm,
amed PP-MI, which provably addresses the issues of initial value. The
seudo-code for the PP-MI operation is provided in Algorithm 3.

.3. Analysis of communication complexity

Now, we analyze the theoretical communication rounds and com-
unication volume for the proposed PP-Exp and PP-MI. We assume

hat the assistant server 𝑇 has pre-generated a sufficient number of
andom numbers for the PP-GP calculation process during the offline
hase. These random number shares have been transmitted in ad-
ance to the respective computing servers. The PP-Exp algorithm on
n 𝑛-dimensional vector 𝐮, as outlined in Algorithm 2, requires only
ne communication round at Line 6. The data exchanged during this
nteraction amounts to (2𝑛𝑙).

In PP-MI, we employ Cholesky decomposition to break down the
atrix inversion process into basic operations such as addition, mul-

iplication, and division. A single-element SS-based multiplication op-
ration involves only one round of bidirectional communication, trans-
itting 2𝑙 volume. For singular element division, we adopt the privacy-
reserving division in Crypten [78], requiring 17 rounds and a commu-
ication volume of (𝑙). For an 𝑛 × 𝑛 positive definite matrix in PP-MI,
7

there are 𝑛 division rounds and 5𝑛 − 6 multiplication rounds, totaling
2𝑛−6 communication rounds. Computationally, PP-MI demands (𝑛3)

element multiplications and (𝑛2) element divisions. Thus, the overall
communication volume for the PP-MI algorithm is (𝑛3𝑙).

. Efficient privacy-preserving Gaussian process

In this section, we explore methods to expand the proposed privacy-
reserving GP algorithm to accommodate larger-scale datasets. The
verall framework of the method is illustrated in Fig. 4.

In general, the advantages of the GP come with significant compu-
ational and space demands. Exact GP inference on substantial datasets
ecessitates confronting the time and space constraints associated with
inear system solutions. Specifically, the GP posterior evaluation, in-
olving a matrix inversion, demands a time complexity of (𝑛3) time
omplexity for 𝑛 data points. Moreover, the Cholesky decomposition
onsumes (𝑛2) memory, accounting for both the lower-triangular fac-
or 𝐿 and the kernel matrix. With 𝑛 = 500, 000, this decomposition
ecessitates an entire terabyte of memory and an extensive amount
f computational resources, as highlighted by [60]. Consequently, em-
loying SMPC protocols introduces pronounced communication bottle-
ecks, particularly with non-linear operations like exponentiation and
atrix inversion, rendering the privacy-preserving GP largely unsuit-

ble for extensive datasets.
In the context of GP, one widespread strategy for accommodating

ernel methods on expansive datasets is to substitute the kernel matrix
with its approximate low-rank factorization. Such a substitution

ffectively transforms the kernel function 𝑘 into a finite-dimensional
nner product 𝑘(𝐱, 𝐱′) ≈

⟨

𝝓𝑀 (𝐱),𝝓𝑀 (𝐱′)
⟩

, derived from a feature map
(⋅) ∶ R𝑑 → R𝑀 . This approximation considerably speeds up the
ownstream training phase. However, pinpointing an optimal feature
ap remains a complex endeavor. A well-regarded method in this

ontext is the random Fourier features approach [26], which offers an
pproximation to the Gaussian (RBF) Kernel.
Algorithm 3: Privacy-preserving matrix inversion (PP-MI)
Setup: The servers (0,1, 𝑇 ) choose appropriate 𝑙 and 𝑙𝑓 .
Input: 𝑖 has the share [𝐔]𝑖, 𝑖 ∈ {0, 1}.
Output: 𝑖 gets share [𝚲]𝑖.
/* Offline phase */

1 𝑇 generates 𝐀,𝐁 ∈ 𝑍𝑛×𝑛
𝐿 randomly, and computes 𝐂 = 𝐀𝐁

2 𝑇 sends ([𝐀]𝑖, [𝐁]𝑖, [𝐂]𝑖) to 𝑖
/* Online phase */
// Step 1:Privacy-preserving Cholesky decomposition.𝑖 gets [𝐋]𝑖 , [𝐃]𝑖

3 for 𝑖 = 0, 1 in parallel do
4 [𝑑1]𝑖 ← [𝑢1,1]𝑖
5 𝑖 computes [𝑙1∶𝑛,1]𝑖 ← [𝑢1∶𝑛,1]𝑖∕[𝑢1,1]𝑖 using Div
6 for 𝑘 = 2, 3,… , 𝑛 do
7 𝑖 computes [𝑑𝑘]𝑖 ← [𝑢𝑘,𝑘]𝑖 − [

∑𝑘−1
𝑚=1 𝑙

2
𝑘,𝑚𝑑𝑚]𝑖 using MatMul

8 𝑖 computes [𝑙𝑘+1∶𝑛,𝑘]𝑖 ← [𝑢𝑘+1∶𝑛,𝑘]𝑖 − [
∑𝑘−1

𝑚=1 𝑙𝑘,𝑚𝑑𝑚𝑙𝑘+1∶𝑛,𝑚]𝑖 using MatMul

9 𝑖 computes [𝑙𝑘+1∶𝑛,𝑘]𝑖 ← [𝑙𝑘+1∶𝑛,𝑘]𝑖∕[𝑑𝑘]𝑖 using Div

0 end
1 end
// Step 2:Privacy-preserving Forward and Backward.𝑖 gets [𝐕]𝑖 and [𝚲]𝑖

2 for 𝑖 = 0, 1 in parallel do
3 𝑣1,1 ← 1
4 for 𝑘 = 2, 3,… , 𝑛 do
15 𝑖 computes [𝑣𝑘,1∶𝑘−1]𝑖 ← −[

∑𝑘−1
𝑚=1 𝑣𝑚,1∶𝑘−1𝑙𝑘,𝑚]𝑖 using MatMul

6 end
7 𝑖 computes [𝚲]𝑖 ← [𝐕⊤]𝑖[𝐃−1]𝑖[𝐕]𝑖 using Div and MatMul

8 end
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Fig. 4. Overview of our Split-GP framework. Data holders and users use SS techniques to compute the random features based on their private data ([𝜱]𝑖), individually.
Subsequently, servers combine these random expansions, perform a low-rank factorization for kernel approximation [𝜱𝜱⊤+𝜎2

𝑛𝐼]𝑖, and construct the predictive model ([𝜇𝐱∗ |]𝑖 , [𝜎2
𝐱∗ |]𝑖).
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andom Fourier features. Given 𝑘(𝐱, 𝐱′) = 𝐺(𝐱 − 𝐱′), where 𝐺(𝑧) =
− 1

2𝜎2
‖𝑧‖2 , for 𝜎 > 0, then we have

𝐺(𝐱 − 𝐱′) = 1
2𝜋𝑍 ∬

2𝜋

0

√

2 cos(𝐰⊤𝐱 + 𝑏) ×

√

2 cos(𝐰⊤𝐱′ + 𝑏)𝑒−
𝜎2
2 ‖𝐰‖2d𝐰d𝑏

(5.1)

where 𝑍 is a normalizing factor. For the RBF kernel, the feature map
is defined as:,

𝝓𝑀 (𝐱) = 𝑀−1∕2 ×
(
√

2 cos(𝐰⊤
1 𝐱 + 𝑏1),… ,

√

2 cos(𝐰⊤
𝑀𝐱 + 𝑏𝑀 )

)

,
(5.2)

with 𝐰1,… ,𝐰𝑀 and 𝑏1,… , 𝑏𝑀 sampled independently from 𝑝(𝐰) =
1
𝑍 𝑒−𝜎2‖𝐰‖2∕2 and uniformly within [0, 2𝜋], respectively.

With this on hand, we achieve significant computational benefits.
For the predictive distribution, we utilize a more efficient form:

𝜇𝑓 ∣(𝐱∗) = 𝝓𝑀 (𝐱)⊤
(

𝜱𝜱⊤ + 𝜎2𝑛𝐼
)−1𝜱�̄�, (5.3a)

𝜎2𝑓 ∣(𝐱
∗) = 𝝓𝑀 (𝐱)⊤

(

𝜱𝜱⊤ + 𝜎2𝑛𝐼
)−1𝝓𝑀 (𝐱), (5.3b)

where 𝜱 = 1
√

𝑛

(

𝝓𝑀 (𝐱1),… ,𝝓𝑀 (𝐱𝑛)
)

, �̄� = 1
√

𝑛
(𝑦1, 𝑦2,… , 𝑦𝑛)⊤.

This motivates the development of efficient privacy-preserving GPs
o address concerns related to privacy and efficiency. Inspired by the
xisting work in split learning, we introduce a novel splitting privacy-
reserving GP learning paradigm to address these challenges, termed
plit-GP. This paradigm splits the whole computation process into two
istinct parts: we allocate privacy-sensitive and SMPC-hostile computa-
ions to data holders while delegating SMPC-friendly computations to a
emi-honest server, for computational efficiency and memory concerns.
n particular, data holders first compute the random features 𝝓𝑀 (𝐱) via
MPC techniques using local private data, individually. Servers com-
ine the locally derived random features from data holders to derive
he kernel’s approximate low-rank factorization, collaboratively. Then,
he server conducts follow-up computations using the proposed matrix
nversion operation. In the end, servers derive the final prediction
istribution.

The resulting algorithm, which we refer to as split-GP, is outlined in
lgorithm 4. Specifically, there are several changes compared to PP-GP:

At the initialization, data owners and users construct the random
features on our private observation after the consensus step, individ-
ually. Then, data owners and users convert their random features,
𝜱 and 𝝓𝑀 (𝐱), into shared representations using the 𝑆ℎ𝑟(⋅) function.
These shared representations are then transformed into individual
shares, [𝜱]𝑖, [𝝓𝑀 (𝐱∗)]𝑖, [𝐲]𝑖, which are subsequently dispatched to the
appropriate computing server 𝑖 (𝑖 = 0, 1).
During the model construction phase, servers first compute the shares
[[𝜱𝜱⊤]] and [[Λ]] with the aid of the privacy-preserving matrix multi-
8

plication MatMul and matrix inverse operation PP-MI.
At the prediction stage, the model user invokes 𝑆ℎ𝑟(⋅) to generate
[𝝓𝑀 (𝐱∗)]0 and [𝝓𝑀 (𝐱∗)]1, instead of [𝐱∗]0 and [𝐱∗]1, and sends these
shares to the corresponding computing server. Then, servers compute
[[𝝓⊤

𝑀Λ]] and obtain the shares of the predictive mean
[[𝜇2

𝐱∗|]] = MatMul
(

[[𝝓⊤
𝑀Λ]], [[𝜱𝐲]]

)

and variance [[𝜎2𝐱∗|]] =
MatMul

(

[[𝝓⊤
𝑀Λ]], [[𝝓𝑀 (𝐱∗)]]

)

. Similarly, servers finally send the shares
of the prediction results to the model user.

Algorithm 4: Efficient Privacy-Preserving Gaussian Process via
Split Learning (Split-GP)
Setup: The servers (0,1, 𝑇 ) choose appropriate 𝑙 and 𝑙𝑓 . The

shares
(

[[𝝓𝑀 (𝐱∗)]], [[Φ]], [[Φ𝐲]]
)

.
Input: 𝑖 has shares

(

[𝝓𝑀 (𝐱∗)]𝑗 , [Φ]𝑗 , [Φ𝐲]𝑗
)

and (𝓁, 𝜎2𝑠 , 𝜎
2
𝑛 )

, 𝑖 ∈ {0, 1}.
Output: 𝑖 returns

[

𝜇𝐱∗|
]

𝑖 ,
[

𝜎2𝐱∗|
]

𝑖 .

/* construction stage */
1 [[ΦΦ⊤]] ← 𝜎2𝑠 ⋅ MatMul([[[[Φ]], [[Φ]]⊤]])
2 [[𝚲]] ← PP-MI([[(ΦΦ⊤ + 𝜎2𝑛𝐼)]])
/* Prediction stage */

3 [[𝝓⊤
𝑀𝚲]] ← MatMul([[𝝓⊤

𝑀 (𝐱∗)]], [[𝚲]])
// Compute the predictive moments

4 [[𝜇2
𝐱∗|]] ← MatMul

(

[[𝝓⊤
𝑀𝚲]], [[Φ𝐲]]

)

5 [[𝜎2𝐱∗|]] ← MatMul
(

[[𝝓⊤
𝑀𝚲]], [[𝝓𝑀 (𝐱∗)]]

)

It requires (𝑀3) and (𝑀2𝑛) time to solve the inverse of
(

𝜱𝜱⊤ +
2
𝑀𝐼

)

and the matrix multiplication 𝜱𝜱⊤ in model construction phase.
he predictive distribution is computed in (𝑀2𝑛), with the predictive
ean and variance for an extra test point calculated in (𝑀) and

(𝑀2), respectively. The storage costs are also reduced, since we store
nly the 𝑛 × 𝑀 design matrix 𝜱, rather than the full 𝑛 × 𝑛 covariance

matrix.

6. Correctness and security proof

In this section, we present our main theoretical contributions. First,
we confirm the integrity and security of the proposed operations,
PP-Exp and PP-MI. Subsequently, based on universally composable [82]
ecurity, we deduce the security of both PP-GP and Split-GP algorithms.
ll proofs are deferred to the Appendix A.

Like previous works [83–86], we provably provide the security of
roposed operations against a static semi-honest probabilistic polyno-
ial time (PPT) adversary  following the simulation paradigm [87–
9]. Specifically, a computationally bounded adversary  passively

corrupts either servers at the beginning of the protocol 𝛱 but follows
the protocol specification honestly. The simulation paradigm defines
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two distinct worlds: a real world, where servers conduct the protocol
as per the specification in the presence of , and an ideal world,
where the parties send their inputs to a trusted party that computes
the functionality 𝑓 faithfully. The executions in both worlds are coor-
inated by the environment 𝐸𝑛𝑣, which selects the inputs for the parties

and assumes the role of distinguishing between the real and ideal
executions. Security requires that for any adversary, the real-world
distribution is computationally indistinguishable from the ideal-world
distribution. Namely, for any adversary  in the real world, there is
a simulator 𝑆𝑖𝑚 in the ideal world, such that no environment 𝐸𝑛𝑣 can
distinguish between real and ideal worlds. We recap the definition of a
private protocol in [85,90] as below:

Definition 1. A protocol 𝛱 between servers, which have as input the
shares of features 𝑋 (or random features 𝜙𝑀 (𝑋)) from data owners and
input vector 𝐱 from the user, is a private inference protocol (against
honest-but-curious adversaries) if it satisfies the following guarantees.

• Correctness: On every set of features 𝑋 (or 𝜙𝑀 (𝑋)) and every input
sample 𝐱, the output of the user at the end of the protocol is the
correct inference 𝑓 (𝐱).

• Security: We require that the corrupted, semi-honest servers do not
learn anything about the private input of one another. Formally, for
any corrupted server 𝑆𝑗 (𝑗 ∈ {0, 1}), we require the existence of an
efficient simulator 𝑆𝑖𝑚𝑗 such that
{

𝑆𝑖𝑚𝑗 (𝑥𝑗 , 𝑓𝑗 (𝑥0, 𝑥1)), 𝜆
}

𝑥𝑗 ,𝑥1∈𝑍𝐿
𝑐
≡
{

𝑣𝑖𝑒𝑤𝛱
0 (𝑥0, 𝑥1)

}

𝑥0 ,𝑥1∈𝑍𝐿
, 𝑗 ∈ {0, 1},

where 𝑣𝑖𝑒𝑤𝛱
𝑗 (𝑥0, 𝑥1) is the view of the server 𝑆𝑗 in the execution of

𝛱 , 𝑓 = (𝑓0, 𝑓1) is the functionality with 𝑓𝑗 executed on Server 𝑆𝑗 , 𝜆
denotes some public parameters, and

𝑐
≡ to denote the computationally

indistinguishable [87].

We aim to formalize the idea that a protocol is considered secure
if any computation performed by a party participating in the protocol
can be solely derived from its input and output. Hence, security here
can be formalized by saying that a party’s view during a protocol
execution could be simulated based on its input and output. This
formulation suggests that the parties gain no additional knowledge
from the protocol execution beyond what they can deduce from their
given input and expected output.

It is worth noting that the honest-but-curious security proof for
PP-GP and Split-GP according to the above definition, can be straight-
forwardly derived from the sequential composability of individual sub-
protocols [78,82]. Consequently, our focus is directed towards furnish-
ing a security proof specifically for our non-linear and matrix operation
protocols, i.e., PP-Exp and PP-MI.

To ensure the validity of the proposed PP-Exp operation, our fore-
most concern is to prevent any potential overflow or underflow in
the fixed-point calculations

(

e.g., Line 2 (exp(−�̌�) ∈ <𝐿 ,𝑙𝑓>) and
Line 7 (exp(𝑑) ∈ <𝐿 ,𝑙𝑓>) in Algorithm 2

)

. Thus, it is imperative
that the chosen values for [−�̌�𝑚𝑎𝑥, �̌�𝑚𝑎𝑥) and 𝑙𝑓 adhere to the following
relationship.

Theorem 6.1 (Correctness of PP-Exp). For any value of 𝑢 within the
range [𝑢min, 0], under the condition that (�̌�max − 𝑢min) logexp2 ≤ 𝑙𝑓 < 𝑙−1

2 ,
the PP-Exp operation can accurately compute

(

[exp(𝑢)]0, [exp(𝑢)]1
)

from
([𝑢]0, [𝑢]1). Then, it holds that [exp(𝑢)]0 + [exp(𝑢)]1 = exp(𝑢).

Proof. We defer the proof to Appendix A.1 □

Remark. As an illustrative example, when working with the set of
integers 264 , and assuming that 𝑢 takes values within the interval
[−4, 0], while �̌� is constrained within [−16, 16), setting 𝑙𝑓 = 29 is
sufficient to guarantee the correctness of the PP-Exp operation.
9

f

Moving forward, our attention shifts to the security analysis of the
PP-Exp operation. Within Algorithm 2, it is noteworthy that Line 6
(i.e. 𝑑 ← 𝑅𝑒𝑐([𝑑]0+[𝑑]1)) represents the sole step in which the variable
𝑑 is reconstructed in the fixed-point domain, thereby introducing a
potential risk of information leakage concerning the value of 𝑢.

To elaborate further, given the maximal ranges for 𝑢 and �̌� (i.e.,
[𝑢𝑚𝑖𝑛, 0] and [−�̌�𝑚𝑎𝑥, �̌�𝑚𝑎𝑥)), the knowledge of 𝑑 could be leveraged to
narrow down the feasible range of 𝑢. Such an inference would constitute
an instance of information leakage. For instance, we assume that 𝑢 can
assume values from the set {−2,−1, 0}, 𝑟 can be drawn from {−1, 0, 1},
and we have 𝑑 = 𝑢+𝑟. Under these conditions, if it is known that 𝑑 = −2,
one can deduce that 𝑢 must be either −2 or −1. To rigorously assess
the extent of privacy leakage, the concept of the degree of information
leakage can be stated as follows:

Definition 2. Let  be a finite set and 𝑢 ∈  . Then, the degree of
information leakage about 𝑢 can be defined as 1

| |

.

We consider an algorithm secure when the amount of information
leaked regarding the input remains consistent throughout the entire
execution of the algorithm. Given a fixed precision level 𝑙𝑓 , let 𝑚𝑢
and 𝑚𝑟 denote the number of fixed-point numbers that can be repre-
sented within the intervals [𝑢𝑚𝑖𝑛, 0] and [−�̌�𝑚𝑎𝑥, �̌�𝑚𝑎𝑥), respectively. The
following theorem gives us the security of the PP-Exp operation:

Theorem 6.2 (Security of PP-Exp). For any fixed 𝑢 within the range
[𝑢𝑚𝑖𝑛, 0], the PP-Exp holds secure, with the probability

𝑚𝑟−𝑚𝑢+1
𝑚𝑟

. Addition-
lly, the expected degree of information leakage on 𝑢 is 𝑚𝑢+𝑚𝑟−1

𝑚𝑢⋅𝑚𝑟
.

Proof. The proof of Theorem 6.2 is deferred to Appendix A.3. □

Remark. The result in Theorem 6.2 demonstrates that the security of
PP-Exp operation is influenced by the relative sizes of the sets of values
for 𝑢 and 𝑟 (i.e., 𝑚𝑟 − 𝑚𝑢). Specifically, when the number of values
f 𝑟 significantly surpasses the number of values of 𝑢, indicated by a

larger 𝑚𝑟 − 𝑚𝑢, the PP-Exp operation guarantees a minimal probability
of privacy breaches.

Opting for a wider range for �̌� (i.e., a larger �̌�𝑚𝑎𝑥) can substantially
mitigate the degree of information leakage. However, it is important
to note that a larger �̌�𝑚𝑎𝑥 may lead to a larger 𝑙𝑓 and subsequently a
larger 𝑙, as outlined in Theorem 6.1. Consequently, this can result in
increased communication costs, as will be discussed in Section 4.3.

It is also worth noting that the PP-Exp operation only leaks the
exact value of 𝑢 with a probability of 2

𝑚𝑢𝑚𝑟
. In other words, this occurs

hen both 𝑢 and 𝑟 assume the maximum or minimum values within
their respective ranges. As an illustrative example, when 𝑙𝑓 = 29 and
onsidering that the input 𝑢 can range from [−4, 0] and 𝑟 can range from
−16, 16), we find that 𝑚𝑢 = 231 + 1 and 𝑚𝑟 = 234. In this scenario, the
P-Exp operation achieves security with a probability of 7

8 . The degree
of information leakage is calculated as 9

234+8 , indicating an increase of
1

234+8 over the secure state. Furthermore, the probability of revealing a
specific value of 𝑢 is less than 1

264 .

Theorem 6.3 (Correctness and Security of PP-MI). Given a positive defi-
nite matrix 𝑈 ∈ 𝑍𝑛×𝑛

𝐿 , the PP-MI operation securely derives ([𝑈−1]0, [𝑈−1]1)
rom ([𝑈 ]0, [𝑈 ]1), satisfying [𝑈−1]0 + [𝑈−1]1 = 𝑈−1.

roof. The proof is also deferred to Appendix A.2. □

emark. The correctness and security of PP-MI hinge on the pre-
ision and security of the underlying PP-MM and PP-Div operations.
he results in Theorem 6.3 indicate that the PP-MI operation satisfies
orrectness and security, which provide a further theoretical guarantee
or our proposed approaches.
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Fig. 5. The performance of the proposed PP-Exp in comparison to (a) polynomial approximation methods using Taylor expansions, and (b) iterative approximation methods
mploying the limit approximation of the exponential function.
In light of the above discussion, these protocols are numerically
recise, which preserves the model accuracy of plaintext. Additionally,
e provide a formal security proof for our designed protocols to
emonstrate their security guarantee. While PP-GP presents a minimal
robability of leakage risk, Split-GP is completely devoid of such risks.

. Numerical experiments

We now empirically evaluate the proposed privacy-preserving GPs
nd their underpinning protocols. We evaluated the performance of PP-
P and Split-GP in comparison with standard GP methods on various

arge-scale datasets from the UCI dataset repository. Our experiments
emonstrate that: (1) the proposed operators (PP-MI and PP-Exp) are
oth correct and efficient; (2) there is a negligible performance dif-
erence between PP-GP and standard GP, which further confirms the
orrectness of our proposed method; and (3) while Split-GP exhibits
ome performance loss, likely due to kernel approximation, it signifi-
antly reduces running time and communication volume, particularly
n larger datasets (𝑛 > 104). In addition, we explore the impact of the
umber of random features on the performance of Split-GP, and prove
hat effective results can be achieved with some features significantly
maller than the sample size. Finally, we show that DP-GP incurs
onsiderably higher computational errors due to the added DP noise,
n contrast to the proposed PP-GP, which exhibits lower error rates.

.1. Experimental setup

aselines. We benchmark PP-GP with standard GP models that are
rained using isolated data (local) and combined plaintext data (Exact).
or standard GP, we use the GPyTorch1 [25] package, which conducts
ll computations in plaintext. This allows us to compare the perfor-
ance and accuracy of our privacy-preserving algorithms against the

onventional approach. Meanwhile, our privacy-preserving algorithms
everage ciphertext operations from the open-source Crypten2 [78]

framework for privacy-preserving ML.

Implementation. Moreover, we determine the values of the hyperpa-
rameters 𝜎2𝑠 , 𝜎

2
𝑛 ,𝓁 based on cross-validation. We take a single data

owner as an example, which is easy to expand to multi-data owners
or multi-users. To ensure accuracy and avoid overflow errors in our
experimentation, we set the parameters 𝑙 = 64 and 𝑙𝑓 = 24. Our
experiments are conducted on three servers equipped with an NVIDIA
Tesla V100 GPU. Additionally, we perform the experiments on a local
area network with a communication latency of 0.2 ms and a bandwidth

1 https://gpytorch.ai
2 https://crypten.ai/
10
of 10GB/s. These server configurations and network conditions enable
us to carry out realistic evaluations of the proposed algorithms under
practical settings.

Datasets. We evaluate the proposed models on ten datasets sourced
from the UCI dataset repository [91]. These datasets consist of various
domains and contain up to 48,827 training examples (the maximum
possible before all implementations exhausted GPU memory [25]).
These datasets include Diabetes, Airfoil, Skillcraft, Parkinsons, Po-
leTele, Elevators, Bike, Kin40K, Protein, and KeggDirected. For PP-GP
evaluations, we downsample the larger datasets (𝑛 ≥ 15, 000) to meet
the memory requirements of ciphertext computation.

7.2. Performance of PP-Exp and PP-MI

Firstly, we demonstrate the accuracy and computational efficiency
of the proposed operations.

Evaluation of PP-Exp. We evaluate the performance of the proposed
PP-Exp by comparing it with these baselines: (1) Poly, an SS-based ex-
ponential operation method utilizing Taylor expansion polynomials; (2)
Crypten, an SS-based iterative method utilizing the limit approximation
for the exponential function; and (3) Plaintext, which directly executes
plaintext exponential operations, or in other words, lossless exponential
operations.

To evaluate the effectiveness of the PP-Exp algorithm, we consider
both its accuracy and efficiency. For accuracy evaluations, we test Poly
using various polynomial degrees and Crypten with different iteration
counts. The metric |𝑒𝑢 − 𝑒𝑢| denotes the discrepancy between 𝑒𝑢 pro-
duced by PP-based exponential operation and 𝑒𝑢 derived from plaintext.
Fig. 5 shows our PP-Exp achieves a level of accuracy similar to that
of plaintext while also outperforming the other tested algorithms. It
is also worth noting that, the error rate of PP-Exp remains consistent
across varying input (𝑢). This is because PP-Exp is an unbiased opera-
tion founded on the principle of confusion-correction, setting it apart
from other approximation methods. These methods typically incur both
approximation and precision errors. While the approximation error can
be reduced by increasing computations, it cannot be eliminated. In
contrast, PP-Exp primarily faces precision errors. However, as previ-
ously discussed, this comes with a potential minor privacy risk, which
is relatively small.

We subsequently evaluate the efficiency of PP-Exp against Poly (uti-
lizing a polynomial degree of 10) and Crypten (employing 8 iterations),
with the test conducted on varying input variable sizes, specifically on
𝑒𝐔 for different dimensions of 𝐔. The computational time for the tested
algorithms is illustrated in Fig. 6. Notably, PP-Exp requires considerably
less time compared to both the polynomial and iterative methods.
When handling large input sizes, PP-Exp proves to be up to 70 times
swifter than Poly 10 and as much as 38 times more rapid than Crypten

8.

https://gpytorch.ai
https://crypten.ai/
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Table 1
Root Mean Square Error (RMSE) for conventional and privacy-preserving GP models on UCI datasets, employing an RBF kernel with an
independent length scale for each dimension. Results were obtained by averaging over 5 trials, each with different splits and seeds.
Dataset 𝑛 𝑑 Local Exact PP-GP Split-GP

Diabetes 442 10 0.596 (±4.2 × 10−2) 𝟎.𝟓𝟑𝟖 (±2.0 × 10−3) 𝟎.𝟓𝟑𝟖 (±2.0 × 10−3) 0.585 (±2.1 × 10−3)
Airfoil 1503 5 0.459 (±4.7 × 10−2) 𝟎.𝟏𝟑𝟕 (±7.2 × 10−4) 𝟎.𝟏𝟑𝟕 (±7.2 × 10−4) 0.333 (±2.0 × 10−3)
Skillcraft 3338 18 0.670 (±2.2 × 10−2) 𝟎.𝟓𝟑𝟕 (±6.1 × 10−3) 𝟎.𝟓𝟑𝟕 (±6.0 × 10−3) 0.582 (±6.6 × 10−3)
Parkinsons 5875 19 0.515 (±6.7 × 10−3) 𝟎.𝟐𝟗𝟎 (±2.8 × 10−4) 𝟎.𝟐𝟗𝟎 (±2.8 × 10−4) 0.519 (±6.1 × 10−4)

PoleTele 15,000 26 0.124 (±1.2 × 10−3) 𝟎.𝟎𝟗𝟐 (±1.3 × 10−5) 0.110 (±1.6 × 10−5) 0.143 (±2.5 × 10−5)
Elevators 16,599 16 0.247 (±4.9 × 10−3) 𝟎.𝟏𝟓𝟏 (±1.2 × 10−5) 0.163 (±9.8 × 10−5) 𝟎.𝟏𝟓𝟏 (±1.2 × 10−5)
Bike 17,379 17 0.201 (±3.7 × 10−3) 𝟎.𝟏𝟑𝟑 (±8.5 × 10−6) 0.202 (±1.6 × 10−5) 0.172 (±6.8 × 10−5)

Kin40K 40,000 8 0.101 (±3.7 × 10−3) 𝟎.𝟎𝟔𝟔 (±5.6 × 10−5) 𝟎.𝟎𝟔𝟔 (±5.6 × 10−5) 0.111 (±1.4 × 10−4)
Protein 45,730 9 0.711 (±7.3 × 10−3) 𝟎.𝟔𝟏𝟕 (±4.5 × 10−4) 0.682 (±3.2 × 10−3) 0.622 (±1.8 × 10−5)
KeggDirected 48,827 20 0.034 (±6.3 × 10−3) 0.023 (±2.5 × 10−5) 0.023 (±2.5 × 10−5) 𝟎.𝟎𝟏𝟕 (±5.0 × 10−5)
G
t
P
e
h
p
o

d
s
s
t
i
f
a

E
t
T

v
f
r
s
c
t
i
p
m
t
t
S

S
c

Fig. 6. The runtime of the tested methods for computing 𝑒𝐔 based on varying sizes of
𝐔.

Evaluation of PP-MI. We evaluate the efficacy of PP-MI using randomly
generated covariance matrices, comparing its performance against two
baselines: (i) Plaintext-Cholesky, which utilizes Cholesky decompo-
sition for matrix inversion, and (ii) Plaintext-inv, found within the
torch.linalg library. Firstly, we randomly sample an input matrix 𝑋 ∈
[−10, 10]𝑛×𝑑 with 𝑑 = 2. Using the RBF kernel with parameters 𝜎2𝑠 = 1,
𝓁 = 1, and 𝜎2𝑛 = 0.1, we then compute 𝐾 + 𝜎2𝑛𝐼 . For evaluating
he accuracy of a matrix inversion algorithm, we consider the output
atrix as Λ and adopt ‖(𝐾 +𝜎2𝑛𝐼)Λ−𝐼‖2 as the accuracy measure. The

nversion accuracy and runtime, averaged over five independent runs
nd varying 𝑛, are presented in Fig. 7.

Observably, PP-MI introduces a tolerable level of accuracy devi-
tion (approximately 0.0001 when 𝑛 = 400) while maintaining a
easonable computational cost. This minor inaccuracy comes from the
pproximation entailed by SS-based division and the immutable steps
f fixed-point encoding, inherent to numerous SS-based algorithms.
n the other hand, PP-MI consistently demonstrates that with increas-

ng matrix size, both error and computation time remain stable. This
uggests our operator has the potential for large-scale computations.

.3. Performance of privacy-preserving GPs

Subsequently, we benchmark the privacy-preserving GP models on
eal-world datasets sourced from the UCI repository. We report results
veraged from 5 runs using various random seeds and initialization.

ccuracy. In Table 1, we report test prediction error (root mean square
rror, RMSE) for both plaintext and privacy-preserving models, includ-
ng standard GP models that are trained using isolated data (local) and
ombined plaintext data (Exact). In general, as data volume increases,
P demonstrates improved prediction accuracy. Hence, the need arises
11

or practical collaborative GP models that prioritize privacy across o
Table 2
Error rate (%) for conventional and privacy-preserving GP models on UCI datasets,
employing an RBF kernel with an independent length scale for each dimension.

Dataset PP-GP Split-GP

Diabetes 0.12872 (±4.1 × 10−2) 𝟎.𝟎𝟎𝟎𝟕𝟏 (±1.7 × 10−6)
Airfoil 0.06049 (±5.3 × 10−3) 𝟎.𝟎𝟎𝟑𝟓𝟔 (±5.6 × 10−5)
Skillcraft 11.29721 (±2.51 × 102) 𝟎.𝟎𝟎𝟎𝟎𝟕 (±6.7 × 10−7)
Parkinsons 0.08547 (±4.5 × 10−3) 𝟎.𝟎𝟎𝟏𝟗𝟖 (±2.4 × 10−5)

PoleTele 0.48856 (±1.5 × 10−1)∗ 𝟎.𝟎𝟎𝟗𝟑 (±1.5 × 10−4)
Elevators 0.80595 (±3.2 × 10−1)∗ 𝟎.𝟑𝟔𝟓𝟖 (±5.3 × 10−1)
Bike 0.00483 (±8.8 × 10−6)∗ 𝟎.𝟎𝟎𝟏𝟗 (±2.9 × 10−6)

Kin40K 0.22336 (±1.5 × 10−2)∗ 𝟎.𝟎𝟑𝟑𝟓𝟓 (±2.4 × 10−3)
Protein 242.06341 (±1.6 × 105)∗ 𝟎.𝟎𝟎𝟎𝟑𝟖 (±3.1 × 10−6)
KeggDirected 11.24339 (±2.2 × 102)∗ 𝟎.𝟎𝟎𝟓𝟖𝟔 (±3.2 × 10−3)

diverse private data sources. Across all small datasets (𝑛 < 104), PP-
P has comparable performance with the model that is trained on

he mixed plaintext data. Essentially, this is because the PP-Exp and
P-MI protocols provide sufficient accuracies that are approximately
qual to those of plaintext functions. Consequently, the operators we
ave proposed not only serve as a robust basis for building privacy-
reserving GPs but also have potential applicability to a broader range
f privacy-preserving ML algorithms.

On the other hand, while the predictive accuracy of Split-GP slightly
iminishes, the degradation is not pronounced. Especially for large-
cale data (𝑛 > 104), the prediction accuracy of Split-GP is about the
ame compared to exact GP wants. The principal reason for this is
he employment of a low-rank approximation for the kernel, which
nherently favors computational efficiency at the cost of optimal per-
ormance. However, by tuning the number of random features, we can
chieve a trade-off between performance and efficiency.

rror comparison. Let 𝜇𝐱| and �̂�𝐱| represent the predictive mean of
he privacy-preserving GPs in plaintext and ciphertext, respectively.
he relative difference between the predictive metric is given by:
1
|𝐱| (|𝜇𝐱| − �̂�𝐱||∕𝜇𝐱|). To assess the performance of PP-GPs across
arying data scales, we randomly sampled observations and test data
rom each dataset, with 𝑛 indicating the sample size. We averaged
esults over 5 random runs. The error rate of the predictive results is
hown in Table 2. It is evident that PP-GP offers a predictive mean
losely matching that of the conventional GP, except for the Pro-
ein dataset. The observed discrepancies arise from approximations
n some SS-based operations, such as division, as well as the fixed-
oint encoding step. Notably, the computational errors in Split-GP are
arginally lower than in other SS-based GPs. This can be attributed

o the kernel’s low-rank approximation, which reduces the matrix size,
hereby significantly minimizing losses stemming from encoding and
S-based operations.

peedup. We compare Split-GP with PP-GP in terms of runtime and
ommunication. Table 3 outlines the runtime and communication cost

verheads. For each dataset, we have recorded the total time required,
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Fig. 7. The performance and runtime of the proposed PP-MI in compared against plaintext-Cholesk and plaintext-inv, with error bars indicating a 95% confidence interval based
on 5 runs with different initializations and random seeds.
Table 3
Total computation time and communication cost of conventional and privacy-preserving GP models on UCI datasets using an
RBF kernel with independent length scale for each dimension.

Dataset Runtime Communication

Exact PP-GP Split-GP Speedup PP-GP Split-GP Speedup

Diabetes 0.1 s 30.6 s 6.7 s 5× 3.74 Gb 0.06 Gb 64×
Airfoil 0.2 s 2.1 min 15.3 s 8× 143.45 Gb 0.27 Gb 536×
Skillcraft 0.2 s 5.2 min 13.8 s 22× 1563.97 Gb 0.66 Gb 2379×
Parkinsons 2.4 s 10.3 min 19.1 s 32× 4363.63 Gb 1.49 Gb 2938×

PoleTele 1.5 s 13.6∗ min 1.2 min 12× 5252.52∗ Gb 41.30 Gb 128×
Elevators 1.8 s 15.1∗ min 1.3 min 12× 7111.97∗ Gb 41.69 Gb 171×
Bike 2.0 s 13.8∗ min 1.7 min 8× 6359.30∗ Gb 107.91 Gb 59×
which includes all stages such as pre-computation, model construction,
and inference phases. As evident from Table 3, Split-GP outpaces its
privacy-preserving counterparts (PP-GP) – an anticipated outcome. The
acceleration for Split-GP ranges between 5 to 32×, averaging around
0× for larger datasets. Moreover, the execution speed remains unaf-
ected by escalating sample sizes. This trend could be attributed to the
dditional time consumed during random feature formulation. More-
ver, we assess the communication volume on the server side during
omputations. Split-GP drastically curtails communication expenses,
endering it apt for real-world communication settings, especially in
dge scenarios where communication bandwidth is constricted. After
hat, we find that matrix inversion is the primary cause of the com-
unication burden and time overhead. Finally, it is important to note

hat while Split-GP may not quite match plaintext performance, it
onsiderably reduces both communication overhead and running time
ompared to PP-GP. This reduction notably aligns with the decreased
imensionality in matrix operations.

valuation of RF. The random feature approximation enables us to
evelop a learning framework for privacy-preserving GP models which
ignificantly reduces communication costs and runtime. We have stud-
ed the impact of varying numbers of random features on Split-GP,
nd the results are shown in Fig. 8. It can be seen the performance
f Split-GP improves as the dimension of random features increases.
onsequently, We can select the appropriate number of random fea-
ures, and the level of approximation can be tuned based on constraints
n runtime or hardware. In most cases, we can set the dimension to
000 ∼ 1500 for most large-scale data to reduce communication while
nsuring performance.

ompare with DP-GP. Differential privacy is a widely recognized ap-
roach that aims to preserve privacy in machine learning by adding
oise within a privacy budget [66]. This provides privacy but can re-
uce model accuracy. Smith et al. [20] introduced a privacy-preserving
lgorithm, yet it only secures the model outputs �̂� by adding noise

within this budget. This approach does not fully protect both inputs
and outputs of the model. To evaluate the effectiveness of the proposed
12
Fig. 8. RMSE as a function of the number of features.

method, we contrast it against the DP-based method. We measure
this by comparing the error in the predicted mean of DP-GP across
varying levels of DP guarantees, represented by different values of
𝜖, using the diabetes dataset. Generally, a higher 𝜖 indicates a more
generous privacy budget. Table 4 shows that even with a substantial
privacy budget, specifically 𝜖 = 1.0, DP-GP suffers from considerable
computational errors due to added DP noise, compared to our proposed
PP-GP. It is worth mentioning that the relative error rate of our PP-GP
consistently stays below 0.01%.

8. Conclusion

In this paper, we proposed PP-GP, a novel and general framework
for privacy-preserving GP based on secret sharing. We finish this by in-
troducing two additive SS-based functions (PP-Exp and PP-MI) designed

to seamlessly integrate with existing SS operations, ensuring a secure
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Table 4
Comparison between our algorithm and the DP-based method in terms of relative error rate(%).

𝑛 Test DP-GP(𝜖 = 1.0) DP-GP(𝜖 = 0.5) DP-GP(𝜖 = 0.2) PP-GP

80 20 18.6(±23.4) 42.9(±188.3) 96.6(±584.8) 0.0007(±3.6 × 10−4)
150 50 27.8(±19.4) 61.2(±311.6) 148.6(±1457.7) 0.0018(±1.3 × 10−3)
300 100 18.3(±10.5) 33.5(±23.7) 80.6(±133.3) 0.0058(±2.5 × 10−3)
A

P
f
p

L

and efficient GP model. Our theoretical analysis demonstrates the secu-
rity and computational efficiency of our approach. To further boost the
efficiency, we introduce Split-GP, a split-learning framework incorpo-
rating random features. The resulting framework effectively reduces the
computational and communication costs, making privacy-preserving
GP feasible for larger datasets. We conduct comprehensive experiments
with ten real-world datasets sourced from the UCI dataset repository.
Experiments on these datasets reveal the impressive efficiency of Split-
GP in terms of speed and communication, while the proposed PP-GP
showcases competitive performance compared to standard GP.

CRediT authorship contribution statement

Shiyu Liu: Writing – original draft, Visualization, Validation,
Methodology, Investigation, Formal analysis, Conceptualization.
Jinglong Luo: Validation, Software, Methodology, Investigation,

ata curation. Yehong Zhang: Writing – review & editing,
Supervision, Project administration, Funding acquisition. Hui Wang:
Supervision, Project administration, Funding acquisition. Yue Yu:
Supervision, Resources, Project administration, Funding acquisition.
Zenglin Xu: Supervision, Resources, Project administration, Funding
acquisition.

Declaration of competing interest

The authors declare that they have no known competing financial
interests or personal relationships that could have appeared to
influence the work reported in this paper.

Data availability

Data will be made available on request.

Acknowledgments

This work was partially supported by the National Key Research and
Development Program of China (No. 2022ZD0115301), the National
Natural Science Foundation of China (No. 62206139), the National Key
Research and Development Program of China (No. 2018AAA0100204),
a key program of fundamental research from Shenzhen Science and
Technology Innovation Commission (No. JCYJ20200109113403826),
and an Open Research Project of Zhejiang Lab (NO. 2022RC0AB04).

Appendix

The appendices are structured as follows. We provide proofs for
two of our main results, the Correctness and Security of PP-Exp in
Appendices A.1 and A.2, respectively. The proof of Theorem 6.3 is
sketched in Appendix A.3.

Appendix A. Proofs

A.1. Proof of Theorem 6.1: Correctness of PP-Exp

Proof of Theorem 6.1. For algorithm correctness, we must address
potential overflow or underflow errors in Algorithm 2. The PP-Exp
algorithm operates on two algebraic structures: the ring of integers 𝐿
mod 𝐿 and the fixed-point set <𝐿 ,𝑙𝑓>. Share operations occur on 𝐿,
13

and others on <𝐿 ,𝑙𝑓>.
Underflow. The risk in PP-Exp arises when calculating exp(−�̌�) and
exp(𝑑). The lower bound is exp(𝑢𝑚𝑖𝑛 − �̌�𝑚𝑎𝑥). For no underflow, this value
should be expressible as a fixed-point number with precision 𝑙𝑓 , which
results in the condition 𝑙𝑓 ≥ (�̌�𝑚𝑎𝑥 − 𝑢𝑚𝑖𝑛) log

exp
2 .

Overflow. The potential overflow in PP-Exp occurs when computing
[exp(𝑢)]𝑗 , 𝑗 ∈ {0, 1}. The maximum reconstructed value is

[exp(𝑢𝑚𝑎𝑥)]0 + [exp(𝑢𝑚𝑎𝑥)]1
=exp(𝑢𝑚𝑎𝑥 + �̌�) × 2𝑙𝑓 ×

(

[exp(−�̌�)]0 + [exp(−�̌�)]1
)

=exp(𝑢𝑚𝑎𝑥) × 22𝑙𝑓 ,

(A.1)

which can be seen in Algorithm 2. To prevent overflow during recon-
struction, the condition exp(𝑢𝑚𝑎𝑥) × 22𝑙𝑓 ≤ 2𝑙−1 must hold. Since 𝑢 < 0,
PP-Exp avoids overflow if 𝑙𝑓 < (𝑙−1)

2 . □

.2. Proof of Theorem 6.2 : Security of PP-Exp

roof of Theorem 6.2. The proof of Theorem 6.2 is based on the
ollowing lemma, which has been widely used in existing privacy-
reserving ML works [23,60].

emma A.1 (Feng et al. [92]). For any 𝑎 in 𝑍𝐿, if 𝑏 is uniformly
distributed in 𝑍𝐿 and independent of 𝑎, then 𝑎 + 𝑏 is also uniformly
distributed in 𝑍𝐿 and independent of 𝑎.

Note that during the execution of the privacy-preserving algorithms,
𝑇 only generates random numbers that meet the public conditions
in the offline phase. Therefore, there is a PPT simulator 𝑆𝑖𝑚𝑇 which
can randomly generate corresponding random numbers to simulate 𝑇
according to public information, making the semi-honest adversary 
cannot distinguish between the simulated view and the real view.

Theorem 6.2 holds if and only if the PP-Exp algorithm satisfies
the security requirements under the semi-honest model defined in this
paper. We need to prove that during the execution of the PP-Exp, the
view of each computing server is simulatable except for the probability
𝑚𝑟−𝑚𝑢+1

𝑚𝑟
and the amount of privacy leakage is 𝑚𝑢+𝑚𝑟−1

𝑚𝑢×𝑚𝑟
. Specifically, we

assume that a computing server is controlled by the adversary  during
the execution of the PP-Exp. Without loss of generality, we assume that
𝑆1 is corrupted by .

The view of 𝑆1 is {𝑣𝑖𝑒𝑤𝑃𝑃−𝐸𝑥𝑝
1 (𝑢0, 𝑢1)}𝑢0 ,𝑢1∈𝑧𝐿 = {[𝑢]1, [𝑟]1,

[exp(−�̌�)]1, 𝑑} where [𝑟]1 and [exp(−�̌�)]1 are random values gener-
ated by 𝑇 . It does not contain any information of the privacy data
𝑢. Therefore, there is a PPT simulator 𝑆𝑖𝑚𝑆1

which can simulate
{𝑣𝑖𝑒𝑤𝑃𝑃−𝐸𝑥𝑝

1 (𝑢0, 𝑢1)}𝑢0 ,𝑢1∈𝑧𝐿 using the input of 𝑆1 and some public
information, making the semi-honest adversary  cannot distinguish
between the simulated view and the real view. We continue to analyze
the probability that 𝑑 leaks private data 𝑢 and the amount of leakage.

The variables 𝑢 and 𝑟 can take on 𝑚𝑢 and 𝑚𝑟 possible values
respectively. The chance that the algorithm leaks privacy information
about 𝑢 is
(1 + 2 +⋯ + 𝑚𝑢) × 2

𝑚𝑢𝑚𝑟
=

𝑚𝑢 × (𝑚𝑢 − 1)
𝑚𝑢𝑚𝑟

=
𝑚𝑢 − 1
𝑚𝑟

. (A.2)

Hence, the security probability of PP-Exp is 1− 𝑚𝑢−1
𝑚𝑟

= 𝑚𝑟−𝑚𝑢+1
𝑚𝑟

. Due
to the nature of the RBF kernel, 𝑢 ∝ −(𝑥 − 𝑥′)2, the potential values of
𝑢 are restricted on R+. This further reduces the risk of leaking input 𝑢.
For instance, when 𝑙𝑓 = 229 and 𝑢 falls within [−4, 0] while 𝑟 is between
[−16, 16), the number of possible values for 𝑢 is 231+1 and for 𝑟 is 234+1.

234−231 = 7 .
Then, the algorithm’s security probability is 234 8
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The expected degree of information leakage measures the potential
privacy vulnerability of PP-Exp. For clarity, consider an example: Given
𝑢 ∈ {−2,−1, 0}, 𝑟 ∈ {−3,−2,−1, 0, 1, 2, 3}, and 𝑑 = 𝑢+𝑟, the probabilities
of 𝑑 are:
P(𝑑 = −3) = P(𝑑 = −2) = P(𝑑 = −1)

= P(𝑑 = 0) = P(𝑑 = 1) = 3∕21,

P(𝑑 = −5) = P(𝑑 = 3) = 1∕21,

P(𝑑 = −4) = P(𝑑 = 2) = 2∕21.

(A.3)

For 𝑑 ∈ {−3,−2,−1, 0, 1}, any of the 𝑢 values in {−2,−1, 0} can be
chosen without revealing extra information. Hence, the leakage degree
for 𝑢 is 5× 3

21 ×
1
3 = 5

21 . For 𝑑 ∈ {−5, 3}, each 𝑢 value is distinct, resulting
in a leakage degree of 2

21 . For 𝑑 ∈ {−4, 2}, there are two potential 𝑢
alues, making the leakage 2

21 . Therefore, the degree of information
eakage of 𝑢 averaged over specific 𝑑 is 9

21 .
In the PP-Exp, the chances of excluding 𝑚𝑢−𝑘 possible 𝑢 values due

o 𝑑 are determined by the formula 2𝑘
𝑚𝑢𝑚𝑟

, with 𝑘 = 1, 2… , (𝑚𝑢 − 1).
onsequently, the average degree of information leakage for 𝑢 can be
alculated as:

1 −
𝑚𝑢 − 1
𝑚𝑟

)

× 1
𝑚𝑢

+
∑𝑚𝑢−1

𝑘=1

( 2𝑘
𝑚𝑢𝑚𝑟

)

× 1
𝑘

=
𝑚𝑢 + 𝑚𝑟 − 1
𝑚𝑢 × 𝑚𝑟

.
(A.4)

More importantly, the PP-Exp only reveals 𝑢’s exact value when both
ts maximum and minimum are in the range where both 𝑢 and 𝑟 values

overlap. The probability of this occurrence is less than:
2
𝑚𝑛

= 2
(231 + 1) × (234 + 1)

< 1
264

. (A.5)

Therefore, there is a PPT simulator 𝑆𝑖𝑚0 that can perfectly simulate
the view of 𝑆0 by knowing the inputs and outputs of 𝑆0 except for the
probability 𝑚𝑟−𝑚𝑢+1

𝑚𝑟
. In the same way, it can be proved that the view

f 𝑆0 is simulatable during the execution of the PP-Exp except for the
robability 𝑚𝑟−𝑚𝑢+1

𝑚𝑟
. □

.3. Proof of Theorem 6.3 : Correctness and security of PP-MI

roof of Theorem 6.3. Theorem 6.3 holds if and only if the PP-
I algorithm satisfies the correctness and security requirements under

he semi-honest model as defined in this paper. Recall that the cor-
ectness and security of PP-MI depend on the correctness and security
f privacy-preserving multiplication (MatMul) and privacy-preserving

division (Div).
In this subsection, we start by establishing the correctness and

security of the MatMul algorithm. To perform the privacy-preserving
ultiplicative computation of the matrices 𝑈 and 𝑉 ∈ 𝑛×𝑛

𝐿 , the
computation server 𝑆𝑗 , 𝑗 ∈ {0, 1} takes [𝑈 ]𝑗 and [𝑉 ]𝑗 as inputs and
outputs [𝑈𝑉 ]𝑗 by executing MatMul. To compute [𝑈𝑉 ]𝑗 , the assistant
server 𝑇 generates the beaver triples 𝐴, 𝐵, and 𝐶, where 𝐴 and 𝐵 are
random values in 𝑛×𝑛

𝐿 , and 𝐶 is obtained by calculating 𝐴×𝐵 mod 𝐿.
Each party, 𝑃𝑖, starts by determining [𝐷]𝑖 = [𝑈 ]𝑖 − [𝐴]𝑖 and [𝐸]𝑖 =
[𝑉 ]𝑖 − [𝐵]𝑖. Subsequently, the parties exchange their calculated values
[𝐷]𝑖 and [𝐸]𝑖, and using these shared values, they jointly reconstruct
𝐷 through Rec([𝐷]0, [𝐷]1) and 𝐸 through Rec([𝐸]0, [𝐸]1). The final
computation for the additive share of 𝑈 × 𝑉 is obtained as [𝑈 × 𝑉 ]𝑖 =
−𝑗 ×𝐷 × 𝐸 + [𝑈 ]𝑖 × 𝐸 +𝐷 × [𝑉 ]𝑖 + [𝐶]𝑖.

Hence, the correctness of MatMul can be proven by:

[𝑈 × 𝑉 ]0 + [𝑈 × 𝑉 ]1
= −𝐷 × 𝐸 + ([𝑈 ]0 + [𝑈 ]1) × 𝐸 +𝐷 × ([𝑉 ]0 + [𝑉 ]1)

+ ([𝐶]0 + [𝐶]1)

= − (𝑈 − 𝐴)(𝑉 − 𝐵) + 𝑈 (𝑉 − 𝐵) + (𝑈 − 𝐴)𝑉 + 𝐴𝐵

= − 𝑈𝑉 + 𝑈𝐵 − 𝐴𝑉 − 𝐴𝐵 + 𝑈𝑉 − 𝑈𝐵

+ 𝑈𝑉 − 𝐴𝑉 + 𝐴𝐵

(A.6)
14

=𝑈𝑉
Next, we prove the security of MatMul. We assume that a computing
server is controlled by adversary  during the execution of MatMul.
Without loss of generality, let us assume that  controls 𝑆1. The
view of 𝑆1 is denoted as {𝑣𝑖𝑒𝑤MatMul

1 (𝑈0, 𝑈1, 𝑉0, 𝑉1)}𝑈0 ,𝑈1 ,𝑉0 ,𝑉1∈𝑛×𝑛
𝐿

=
{[𝑈 ]1, [𝑉 ]1, [𝐴]1, [𝐵]1, [𝐶]1, 𝐷, 𝐸}, where {[𝐴]1, [𝐵]1, [𝐶]1} are random
values generated by 𝑇 . According to Lemma A.1, 𝐷 = 𝑈 − 𝐴 and
𝐸 = 𝑉 − 𝐵 are also random values in 𝑛×𝑛

𝐿 . Therefore, no information
about the input data 𝑈 and 𝑉 is leaked during the execution of MatMul.

Additionally, Crypten converts division calculations into multiplica-
tion calculations using Newton’s iterative method. Thus, Div is imple-
mented by invoking MatMul. According to Canetti [82], the correctness
and security of Div can be proven.

Summarizing the above discussion completes the proof of Theo-
rem 6.3. □
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